Handling Spatial Projections & CRS

Last updated on 2024-11-12 | Edit this page

Estimated time: 30 minutes

Overview

Questions

  • What do I do when vector data don’t line up?

Objectives

After completing this episode, participants should be able to…

  • Plot vector objects with different CRSs in the same plot.

Working with spatial data from different sources


R

municipal_boundary_NL <- st_read("data/nl-gemeenten.shp")

OUTPUT

Reading layer `nl-gemeenten' from data source
  `/home/runner/work/r-geospatial-urban/r-geospatial-urban/site/built/data/nl-gemeenten.shp'
  using driver `ESRI Shapefile'
Simple feature collection with 344 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 10425.16 ymin: 306846.2 xmax: 278026.1 ymax: 621876.3
Projected CRS: Amersfoort / RD New

R

ggplot() +
  geom_sf(data = municipal_boundary_NL) +
  labs(title = "Map of Contiguous NL Municipal Boundaries") +
  coord_sf(datum = st_crs(28992))

We can add a country boundary layer to make it look nicer. If we specify a thicker line width using size = 2 for the country boundary layer, it will make our map pop!

R

country_boundary_NL <- st_read("data/nl-boundary.shp")

OUTPUT

Reading layer `nl-boundary' from data source
  `/home/runner/work/r-geospatial-urban/r-geospatial-urban/site/built/data/nl-boundary.shp'
  using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 1 field
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 10425.16 ymin: 306846.2 xmax: 278026.1 ymax: 621876.3
Projected CRS: Amersfoort / RD New

R

ggplot() +
  geom_sf(
    data = country_boundary_NL,
    color = "gray18",
    linewidth = 2
  ) +
  geom_sf(
    data = municipal_boundary_NL,
    color = "gray40"
  ) +
  labs(title = "Map of Contiguous NL Municipal Boundaries") +
  coord_sf(datum = st_crs(28992))

R

# st_crs(point_Delft)

R

st_crs(municipal_boundary_NL)$epsg

OUTPUT

[1] 28992

R

st_crs(country_boundary_NL)$epsg

OUTPUT

[1] 28992

R

boundary_Delft <- st_read("data/delft-boundary.shp")

OUTPUT

Reading layer `delft-boundary' from data source
  `/home/runner/work/r-geospatial-urban/r-geospatial-urban/site/built/data/delft-boundary.shp'
  using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 1 field
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 4.320218 ymin: 51.96632 xmax: 4.407911 ymax: 52.0326
Geodetic CRS:  WGS 84

R

st_crs(boundary_Delft)$epsg

OUTPUT

[1] 4326

R

boundary_Delft <- st_transform(boundary_Delft, 28992)

R

ggplot() +
  geom_sf(
    data = country_boundary_NL,
    linewidth = 2,
    color = "gray18"
  ) +
  geom_sf(
    data = municipal_boundary_NL,
    color = "gray40"
  ) +
  geom_sf(
    data = boundary_Delft,
    color = "purple",
    fill = "purple"
  ) +
  labs(title = "Map of Contiguous NL Municipal Boundaries") +
  coord_sf(datum = st_crs(28992))

Challenge: Plot multiple layers of spatial data

Create a map of South Holland as follows:

  1. Import nl-gemeenten.shp and filter only the municipalities in South Holland.
  2. Plot it and adjust line width as necessary.
  3. Layer the boundary of Delft onto the plot.
  4. Add a title.
  5. Add a legend that shows both the province boundaries (as a line) and the boundary of Delft (as a filled polygon).

R

boundary_ZH <- municipal_boundary_NL %>%
  filter(ligtInPr_1 == "Zuid-Holland")

R

ggplot() +
  geom_sf(
    data = boundary_ZH,
    aes(color = "color"),
    show.legend = "line"
  ) +
  scale_color_manual(
    name = "",
    labels = "Municipal Boundaries in South Holland",
    values = c("color" = "gray18")
  ) +
  geom_sf(
    data = boundary_Delft,
    aes(shape = "shape"),
    color = "purple",
    fill = "purple"
  ) +
  scale_shape_manual(
    name = "",
    labels = "Municipality of Delft",
    values = c("shape" = 19)
  ) +
  labs(title = "Delft location") +
  theme(legend.background = element_rect(color = NA)) +
  coord_sf(datum = st_crs(28992))

Export a shapefile


To save a file, use the st_write() function from the sf package. Although sf guesses the driver needed for a specified output file name from its extension, this can be made explicitly via the driver argument. In our case driver = "ESRI Shapefile" ensures that the output is correctly saved as a .shp file.

R

st_write(leisure_locations_selection,
  "data/leisure_locations_selection.shp",
  driver = "ESRI Shapefile"
)

Key Points

  • ggplot2 automatically converts all objects in a plot to the same CRS.
  • Still be aware of the CRS and extent for each object.
  • You can export an sf object to a shapefile with st_write().