This lesson is being piloted (Beta version)
If you teach this lesson, please tell the authors and provide feedback by opening an issue in the source repository

Analyzing Data

Overview

Teaching: 40 min
Exercises: 20 min
Questions
  • What dataset are we using today?

  • How can I process tabular data files in Python?

Objectives
  • Introduce dataset

  • Explain what a library is and what libraries are used for.

  • Import the Pandas library

  • Use Pandas to read a simple CSV data set

  • Get some basic information about a Pandas Dataframe

Our dataset

We are using a dataset generated by Gapminder which describes income per person (GDP per capita) and life expectancy over a series of years between 1952 and 2007. We have a csv file for each continent and another that combines all data.

The data sets are stored in comma-separated values (CSV) format with each row holding information on a single country.

The first three rows of the first file look like this:

"continent","country","gdpPercap_1952","gdpPercap_1957","gdpPercap_1962","gdpPercap_1967","gdpPercap_1972","gdpPercap_1977","gdpPercap_1982","gdpPercap_1987","gdpPercap_1992","gdpPercap_1997","gdpPercap_2002","gdpPercap_2007","lifeExp_1952","lifeExp_1957","lifeExp_1962","lifeExp_1967","lifeExp_1972","lifeExp_1977","lifeExp_1982","lifeExp_1987","lifeExp_1992","lifeExp_1997","lifeExp_2002","lifeExp_2007","pop_1952","pop_1957","pop_1962","pop_1967","pop_1972","pop_1977","pop_1982","pop_1987","pop_1992","pop_1997","pop_2002","pop_2007"
"Africa","Algeria",2449.008185,3013.976023,2550.81688,3246.991771,4182.663766,4910.416756,5745.160213,5681.358539,5023.216647,4797.295051,5288.040382,6223.367465,43.077,45.685,48.303,51.407,54.518,58.014,61.368,65.799,67.744,69.152,70.994,72.301,9279525,10270856,11000948,12760499,14760787,17152804,20033753,23254956,26298373,29072015,31287142,33333216
"Africa","Angola",3520.610273,3827.940465,4269.276742,5522.776375,5473.288005,3008.647355,2756.953672,2430.208311,2627.845685,2277.140884,2773.287312,4797.231267,30.015,31.999,34,35.985,37.928,39.483,39.942,39.906,40.647,40.963,41.003,42.731,4232095,4561361,4826015,5247469,5894858,6162675,7016384,7874230,8735988,9875024,10866106,12420476

We’ll learn more about how programming can help us explore this data.

Libraries

Words are useful, but what’s more useful are the sentences and stories we build with them. Similarly, while a lot of powerful, general tools are built into Python, specialized tools built up from these basic units live in libraries that can be called upon when needed.

Use the Pandas library to do explore tabular data.

Importing a library is like getting a piece of lab equipment out of a storage locker and setting it up on the bench. Libraries provide additional functionality to the basic Python package, much like a new piece of equipment adds functionality to a lab space. Just like in the lab, importing too many libraries can sometimes complicate and slow down your programs - so we only import what we need for each program.

Once we’ve imported the library, we can ask the library to read our data file for us:

import pandas as pd

data = pd.read_csv('data/gapminder_gdp_oceania.csv')
print(data)
       country  gdpPercap_1952  gdpPercap_1957  gdpPercap_1962  \
0    Australia     10039.59564     10949.64959     12217.22686
1  New Zealand     10556.57566     12247.39532     13175.67800

   gdpPercap_1967  gdpPercap_1972  gdpPercap_1977  gdpPercap_1982  \
0     14526.12465     16788.62948     18334.19751     19477.00928
1     14463.91893     16046.03728     16233.71770     17632.41040

   gdpPercap_1987  gdpPercap_1992  gdpPercap_1997  gdpPercap_2002  \
0     21888.88903     23424.76683     26997.93657     30687.75473
1     19007.19129     18363.32494     21050.41377     23189.80135

   gdpPercap_2007
0     34435.36744
1     25185.00911

The expression pd.read_csv is a function call that asks Python to run the function read_csv which belongs to the pandas library. This dotted notation is used everywhere in Python: the thing that appears before the dot contains the thing that appears after.

As an example, John Smith is the John that belongs to the Smith family. We could use the dot notation to write his name smith.john, just as read_csv is a function that belongs to the pandas library.

pandas.read_csv has one parameter: the name of the file we want to read. This needs to be character string (or string for short), so we put it in quotes.

Our call read our file and saved the data in memory to a variable called data. We then checked our data had been loaded successfully by printing the variable’s value to the screen.

Pandas uses backslash \ to show wrapped lines when output is too wide to fit the screen.

File Not Found

Our lessons store their data files in a data sub-directory, which is why the path to the file is data/gapminder_gdp_oceania.csv. If you forget to include data/, or if you include it but your copy of the file is somewhere else, you will get a runtime error that ends with a line like this:

FileNotFoundError: [Errno 2] No such file or directory: 'data/gapminder_gdp_oceania.csv'

Now that the data are in memory, we can manipulate them.

Use index_col to specify that a column’s values should be used as row headings.

data = pd.read_csv('data/gapminder_gdp_oceania.csv', index_col='country')
print(data)
             gdpPercap_1952  gdpPercap_1957  gdpPercap_1962  gdpPercap_1967  \
country
Australia       10039.59564     10949.64959     12217.22686     14526.12465
New Zealand     10556.57566     12247.39532     13175.67800     14463.91893

             gdpPercap_1972  gdpPercap_1977  gdpPercap_1982  gdpPercap_1987  \
country
Australia       16788.62948     18334.19751     19477.00928     21888.88903
New Zealand     16046.03728     16233.71770     17632.41040     19007.19129

             gdpPercap_1992  gdpPercap_1997  gdpPercap_2002  gdpPercap_2007
country
Australia       23424.76683     26997.93657     30687.75473     34435.36744
New Zealand     18363.32494     21050.41377     23189.80135     25185.00911

Use the DataFrame.info() method to find out more about a dataframe.

data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, Australia to New Zealand
Data columns (total 12 columns):
gdpPercap_1952    2 non-null float64
gdpPercap_1957    2 non-null float64
gdpPercap_1962    2 non-null float64
gdpPercap_1967    2 non-null float64
gdpPercap_1972    2 non-null float64
gdpPercap_1977    2 non-null float64
gdpPercap_1982    2 non-null float64
gdpPercap_1987    2 non-null float64
gdpPercap_1992    2 non-null float64
gdpPercap_1997    2 non-null float64
gdpPercap_2002    2 non-null float64
gdpPercap_2007    2 non-null float64
dtypes: float64(12)
memory usage: 208.0+ bytes

The DataFrame.columns variable stores information about the dataframe’s columns.

print(data.columns)
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
       'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
       'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007'],
      dtype='object')

Use DataFrame.T to transpose a dataframe.

print(data.T)
country           Australia  New Zealand
gdpPercap_1952  10039.59564  10556.57566
gdpPercap_1957  10949.64959  12247.39532
gdpPercap_1962  12217.22686  13175.67800
gdpPercap_1967  14526.12465  14463.91893
gdpPercap_1972  16788.62948  16046.03728
gdpPercap_1977  18334.19751  16233.71770
gdpPercap_1982  19477.00928  17632.41040
gdpPercap_1987  21888.88903  19007.19129
gdpPercap_1992  23424.76683  18363.32494
gdpPercap_1997  26997.93657  21050.41377
gdpPercap_2002  30687.75473  23189.80135
gdpPercap_2007  34435.36744  25185.00911

Note about Pandas DataFrames/Series

A DataFrame is a collection of Series; The DataFrame is the way Pandas represents a table, and Series is the data-structure Pandas use to represent a column.

Pandas is built on top of the Numpy library, which in practice means that most of the methods defined for Numpy Arrays apply to Pandas Series/DataFrames.

What makes Pandas so attractive is the powerful interface to access individual records of the table, proper handling of missing values, and relational-databases operations between DataFrames.

Selecting values

To access a value at the position [i,j] of a DataFrame, we have two options, depending on what is the meaning of i in use. Remember that a DataFrame provides an index as a way to identify the rows of the table; a row, then, has a position inside the table as well as a label, which uniquely identifies its entry in the DataFrame.

Use DataFrame.iloc[..., ...] to select values by their (entry) position

import pandas as pd
data = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')
print(data.iloc[0, 0])
1601.056136

The expression data[30, 20] accesses the element at row 30, column 20. While this expression may not surprise you, data[0, 0] might. Programming languages like Fortran, MATLAB and R start counting at 1 because that’s what human beings have done for thousands of years. Languages in the C family (including C++, Java, Perl, and Python) count from 0 because it represents an offset from the first value in the array (the second value is offset by one index from the first value). This is closer to the way that computers represent arrays (if you are interested in the historical reasons behind counting indices from zero, you can read Mike Hoye’s blog post). As a result, if we have an M×N array in Python, its indices go from 0 to M-1 on the first axis and 0 to N-1 on the second. It takes a bit of getting used to, but one way to remember the rule is that the index is how many steps we have to take from the start to get the item we want.

"data" is a 3 by 3 numpy array containing row 0: ['A', 'B', 'C'], row 1: ['D', 'E', 'F'], and
row 2: ['G', 'H', 'I']. Starting in the upper left hand corner, data[0, 0] = 'A', data[0, 1] = 'B',
data[0, 2] = 'C', data[1, 0] = 'D', data[1, 1] = 'E', data[1, 2] = 'F', data[2, 0] = 'G',
data[2, 1] = 'H', and data[2, 2] = 'I',
in the bottom right hand corner.

In the Corner

What may also surprise you is that when Python displays an array, it shows the element with index [0, 0] in the upper left corner rather than the lower left. This is consistent with the way mathematicians draw matrices but different from the Cartesian coordinates. The indices are (row, column) instead of (column, row) for the same reason, which can be confusing when plotting data.

Use DataFrame.loc[..., ...] to select values by their (entry) label.

print(data.loc["Albania", "gdpPercap_1952"])
1601.056136

Use : on its own to mean all columns or all rows.

print(data.loc["Albania", :])
gdpPercap_1952    1601.056136
gdpPercap_1957    1942.284244
gdpPercap_1962    2312.888958
gdpPercap_1967    2760.196931
gdpPercap_1972    3313.422188
gdpPercap_1977    3533.003910
gdpPercap_1982    3630.880722
gdpPercap_1987    3738.932735
gdpPercap_1992    2497.437901
gdpPercap_1997    3193.054604
gdpPercap_2002    4604.211737
gdpPercap_2007    5937.029526
Name: Albania, dtype: float64
print(data.loc[:, "gdpPercap_1952"])
country
Albania                    1601.056136
Austria                    6137.076492
Belgium                    8343.105127
⋮ ⋮ ⋮
Switzerland               14734.232750
Turkey                     1969.100980
United Kingdom             9979.508487
Name: gdpPercap_1952, dtype: float64

Select multiple columns or rows using DataFrame.loc and a named slice.

print(data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'])
             gdpPercap_1962  gdpPercap_1967  gdpPercap_1972
country
Italy           8243.582340    10022.401310    12269.273780
Montenegro      4649.593785     5907.850937     7778.414017
Netherlands    12790.849560    15363.251360    18794.745670
Norway         13450.401510    16361.876470    18965.055510
Poland          5338.752143     6557.152776     8006.506993

In the above code, we discover that slicing using loc is inclusive at both ends, which differs from slicing using iloc, where slicing indicates everything up to but not including the final index.

Result of slicing can be used in further operations.

print(data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].max())
gdpPercap_1962    13450.40151
gdpPercap_1967    16361.87647
gdpPercap_1972    18965.05551
dtype: float64
print(data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].min())
gdpPercap_1962    4649.593785
gdpPercap_1967    5907.850937
gdpPercap_1972    7778.414017
dtype: float64

Not All Functions Have Input

Generally, a function uses inputs to produce outputs. However, some functions produce outputs without needing any input. For example, checking the current time doesn’t require any input.

import time
print(time.ctime())
Sat Mar 26 13:07:33 2016

For functions that don’t take in any arguments, we still need parentheses (()) to tell Python to go and do something for us.

Slicing Strings

A section of an array is called a slice. We can take slices of character strings as well:

element = 'oxygen'
print('first three characters:', element[0:3])
print('last three characters:', element[3:6])
first three characters: oxy
last three characters: gen

What is the value of element[:4]? What about element[4:]? Or element[:]?

Solution

oxyg
en
oxygen

What is element[-1]? What is element[-2]?

Solution

n
e

Given those answers, explain what element[1:-1] does.

Solution

Creates a substring from index 1 up to (not including) the final index, effectively removing the first and last letters from ‘oxygen’

How can we rewrite the slice for getting the last three characters of element, so that it works even if we assign a different string to element? Test your solution with the following strings: carpentry, clone, hi.

Solution

element = 'oxygen'
print('last three characters:', element[-3:])
element = 'carpentry'
print('last three characters:', element[-3:])
element = 'clone'
print('last three characters:', element[-3:])
element = 'hi'
print('last three characters:', element[-3:])
last three characters: gen
last three characters: try
last three characters: one
last three characters: hi

Selection of Individual Values

Assume Pandas has been imported into your notebook and the Gapminder GDP data for Europe has been loaded:

import pandas as pd

df = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')

Write an expression to find the Per Capita GDP of Serbia in 2007.

Solution

The selection can be done by using the labels for both the row (“Serbia”) and the column (“gdpPercap_2007”):

print(df.loc['Serbia', 'gdpPercap_2007'])

The output is

9786.534714

Extent of Slicing

  1. Do the two statements below produce the same output?
  2. Based on this, what rule governs what is included (or not) in numerical slices and named slices in Pandas?
print(df.iloc[0:2, 0:2])
print(df.loc['Albania':'Belgium', 'gdpPercap_1952':'gdpPercap_1962'])

Solution

No, they do not produce the same output! The output of the first statement is:

        gdpPercap_1952  gdpPercap_1957
country                                
Albania     1601.056136     1942.284244
Austria     6137.076492     8842.598030

The second statement gives:

        gdpPercap_1952  gdpPercap_1957  gdpPercap_1962
country                                                
Albania     1601.056136     1942.284244     2312.888958
Austria     6137.076492     8842.598030    10750.721110
Belgium     8343.105127     9714.960623    10991.206760

Clearly, the second statement produces an additional column and an additional row compared to the first statement.
What conclusion can we draw? We see that a numerical slice, 0:2, omits the final index (i.e. index 2) in the range provided, while a named slice, ‘gdpPercap_1952’:’gdpPercap_1962’, includes the final element.

Reconstructing Data

Explain what each line in the following short program does: what is in first, second, etc.?

first = pd.read_csv('data/gapminder_all.csv', index_col='country')
second = first[first['continent'] == 'Americas']
third = second.drop('Puerto Rico')
fourth = third.drop('continent', axis = 1)
fourth.to_csv('result.csv')

Solution

Let’s go through this piece of code line by line.

first = pd.read_csv('data/gapminder_all.csv', index_col='country')

This line loads the dataset containing the GDP data from all countries into a dataframe called first. The index_col='country' parameter selects which column to use as the row labels in the dataframe.

second = first[first['continent'] == 'Americas']

This line makes a selection: only those rows of first for which the ‘continent’ column matches ‘Americas’ are extracted. Notice how the Boolean expression inside the brackets, first['continent'] == 'Americas', is used to select only those rows where the expression is true. Try printing this expression! Can you print also its individual True/False elements? (hint: first assign the expression to a variable)

third = second.drop('Puerto Rico')

As the syntax suggests, this line drops the row from second where the label is ‘Puerto Rico’. The resulting dataframe third has one row less than the original dataframe second.

fourth = third.drop('continent', axis = 1)

Again we apply the drop function, but in this case we are dropping not a row but a whole column. To accomplish this, we need to specify also the axis parameter (we want to drop the second column which has index 1).

fourth.to_csv('result.csv')

The final step is to write the data that we have been working on to a csv file. Pandas makes this easy with the to_csv() function. The only required argument to the function is the filename. Note that the file will be written in the directory from which you started the Jupyter or Python session.

Selecting Indices

Explain in simple terms what idxmin and idxmax do in the short program below. When would you use these methods?

data = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')
print(data.idxmin())
print(data.idxmax())

Solution

For each column in data, idxmin will return the index value corresponding to each column’s minimum; idxmax will do accordingly the same for each column’s maximum value.

You can use these functions whenever you want to get the row index of the minimum/maximum value and not the actual minimum/maximum value.

Practice with Selection

Assume Pandas has been imported and the Gapminder GDP data for Europe has been loaded. Write an expression to select each of the following:

  1. GDP per capita for all countries in 1982.
  2. GDP per capita for Denmark for all years.
  3. GDP per capita for all countries for years after 1985.
  4. GDP per capita for each country in 2007 as a multiple of GDP per capita for that country in 1952.

Solution

1:

data['gdpPercap_1982']

2:

data.loc['Denmark',:]

3:

data.loc[:,'gdpPercap_1985':]

Pandas is smart enough to recognize the number at the end of the column label and does not give you an error, although no column named gdpPercap_1985 actually exists. This is useful if new columns are added to the CSV file later.

4:

data['gdpPercap_2007']/data['gdpPercap_1952']

Many Ways of Access

There are at least two ways of accessing a value or slice of a DataFrame: by name or index. However, there are many others. For example, a single column or row can be accessed either as a DataFrame or a Series object.

Suggest different ways of doing the following operations on a DataFrame:

  1. Access a single column
  2. Access a single row
  3. Access an individual DataFrame element
  4. Access several columns
  5. Access several rows
  6. Access a subset of specific rows and columns
  7. Access a subset of row and column ranges

Solution

1. Access a single column:

# by name
data["col_name"]   # as a Series
data[["col_name"]] # as a DataFrame

# by name using .loc
data.T.loc["col_name"]  # as a Series
data.T.loc[["col_name"]].T  # as a DataFrame

# Dot notation (Series)
data.col_name

# by index (iloc)
data.iloc[:, col_index]   # as a Series
data.iloc[:, [col_index]] # as a DataFrame

# using a mask
data.T[data.T.index == "col_name"].T

2. Access a single row:

# by name using .loc
data.loc["row_name"] # as a Series
data.loc[["row_name"]] # as a DataFrame

# by name
data.T["row_name"] # as a Series
data.T[["row_name"]].T as a DataFrame

# by index
data.iloc[row_index]   # as a Series
data.iloc[[row_index]]   # as a DataFrame

# using mask
data[data.index == "row_name"]

3. Access an individual DataFrame element:

# by column/row names
data["column_name"]["row_name"]         # as a Series

data[["col_name"]].loc["row_name"]  # as a Series
data[["col_name"]].loc[["row_name"]]  # as a DataFrame

data.loc["row_name"]["col_name"]  # as a value
data.loc[["row_name"]]["col_name"]  # as a Series
data.loc[["row_name"]][["col_name"]]  # as a DataFrame

data.loc["row_name", "col_name"]  # as a value
data.loc[["row_name"], "col_name"]  # as a Series. Preserves index. Column name is moved to `.name`.
data.loc["row_name", ["col_name"]]  # as a Series. Index is moved to `.name.` Sets index to column name.
data.loc[["row_name"], ["col_name"]]  # as a DataFrame (preserves original index and column name)

# by column/row names: Dot notation
data.col_name.row_name

# by column/row indices
data.iloc[row_index, col_index] # as a value
data.iloc[[row_index], col_index] # as a Series. Preserves index. Column name is moved to `.name`
data.iloc[row_index, [col_index]] # as a Series. Index is moved to `.name.` Sets index to column name.
data.iloc[[row_index], [col_index]] # as a DataFrame (preserves original index and column name)

# column name + row index
data["col_name"][row_index]
data.col_name[row_index]
data["col_name"].iloc[row_index]

# column index + row name
data.iloc[:, [col_index]].loc["row_name"]  # as a Series
data.iloc[:, [col_index]].loc[["row_name"]]  # as a DataFrame

# using masks
data[data.index == "row_name"].T[data.T.index == "col_name"].T

4. Access several columns:

# by name
data[["col1", "col2", "col3"]]
data.loc[:, ["col1", "col2", "col3"]]

# by index
data.iloc[:, [col1_index, col2_index, col3_index]]

5. Access several rows

# by name
data.loc[["row1", "row2", "row3"]]

# by index
data.iloc[[row1_index, row2_index, row3_index]]

6. Access a subset of specific rows and columns

# by names
data.loc[["row1", "row2", "row3"], ["col1", "col2", "col3"]]

# by indices
data.iloc[[row1_index, row2_index, row3_index], [col1_index, col2_index, col3_index]]

# column names + row indices
data[["col1", "col2", "col3"]].iloc[[row1_index, row2_index, row3_index]]

# column indices + row names
data.iloc[:, [col1_index, col2_index, col3_index]].loc[["row1", "row2", "row3"]]

7. Access a subset of row and column ranges

# by name
data.loc["row1":"row2", "col1":"col2"]

# by index
data.iloc[row1_index:row2_index, col1_index:col2_index]

# column names + row indices
data.loc[:, "col1_name":"col2_name"].iloc[row1_index:row2_index]

# column indices + row names
data.iloc[:, col1_index:col2_index].loc["row1":"row2"]

Key Points

  • Import a library into a program using import libraryname.

  • Use the pandas library to work with arrays in Python.

  • Array indices start at 0, not 1.

  • Use DataFrame.iloc[..., ...] to select values by integer location.

  • Use : on its own to mean all columns or all rows.

  • Select multiple columns or rows using DataFrame.loc and a named slice.

  • Result of slicing can be used in further operations.