The Workflow Lifecycle
Last updated on 2025-01-07 | Edit this page
Overview
Questions
- What happens if we re-run a workflow?
- How does
targets
know what steps to re-run? - How can we inspect the state of the workflow?
Objectives
- Explain how
targets
helps increase efficiency - Be able to inspect a workflow to see what parts are outdated
Re-running the workflow
One of the features of targets
is that it maximizes
efficiency by only running the parts of the workflow that need to be
run.
This is easiest to understand by trying it yourself. Let’s try running the workflow again:
R
tar_make()
OUTPUT
✔ skipped target penguins_csv_file
✔ skipped target penguins_data_raw
✔ skipped target penguins_data
✔ skipped pipeline [0.066 seconds]
Remember how the first time we ran the pipeline, targets
printed out a list of each target as it was being built?
This time, it tells us it is skipping those targets; they have already been built, so there’s no need to run that code again.
Remember, the fastest code is the code you don’t have to run!
Re-running the workflow after modification
What happens when we change one part of the workflow then run it again?
Say that we decide the species names should be shorter. Right now they include the common name and the scientific name, but we really only need the first part of the common name to distinguish them.
Edit _targets.R
so that the
clean_penguin_data()
function looks like this:
R
clean_penguin_data <- function(penguins_data_raw) {
penguins_data_raw |>
select(
species = Species,
bill_length_mm = `Culmen Length (mm)`,
bill_depth_mm = `Culmen Depth (mm)`
) |>
drop_na() |>
# Split "species" apart on spaces, and only keep the first word
separate(species, into = "species", extra = "drop")
}
Then run it again.
R
tar_make()
OUTPUT
✔ skipped target penguins_csv_file
✔ skipped target penguins_data_raw
▶ dispatched target penguins_data
● completed target penguins_data [0.016 seconds, 1.495 kilobytes]
▶ ended pipeline [0.102 seconds]
What happened?
This time, it skipped penguins_csv_file
and
penguins_data_raw
and only ran
penguins_data
.
Of course, since our example workflow is so short we don’t even notice the amount of time saved. But imagine using this in a series of computationally intensive analysis steps. The ability to automatically skip steps results in a massive increase in efficiency.
Challenge 1: Inspect the output
How can you inspect the contents of penguins_data
?
With tar_read(penguins_data)
or by running
tar_load(penguins_data)
followed by
penguins_data
.
Under the hood
How does targets
keep track of which targets are
up-to-date vs. outdated?
For each target in the workflow (items in the list at the end of the
_targets.R
file) and any custom functions used in the
workflow, targets
calculates a hash value,
or unique combination of letters and digits that represents an object in
the computer’s memory. You can think of the hash value (or “hash” for
short) as a unique fingerprint for a target or
function.
The first time your run tar_make()
, targets
calculates the hashes for each target and function as it runs the code
and stores them in the targets cache (the _targets
folder).
Then, for each subsequent call of tar_make()
, it calculates
the hashes again and compares them to the stored values. It detects
which have changed, and this is how it knows which targets are out of
date.
Where the hashes live
If you are curious about what the hashes look like, you can see them
in the file _targets/meta/meta
, but do not edit
this file by hand—that would ruin your workflow!
This information is used in combination with the dependency relationships (in other words, how each target depends on the others) to re-run the workflow in the most efficient way possible: code is only run for targets that need to be re-built, and others are skipped.
Visualizing the workflow
Typically, you will be making edits to various places in your code, adding new targets, and running the workflow periodically. It is good to be able to visualize the state of the workflow.
This can be done with tar_visnetwork()
R
tar_visnetwork()
You should see the network show up in the plot area of RStudio.
It is an HTML widget, so you can zoom in and out (this isn’t important for the current example since it is so small, but is useful for larger, “real-life” workflows).
Here, we see that all of the targets are dark green, indicating that they are up-to-date and would be skipped if we were to run the workflow again.
Installing visNetwork
You may encounter an error message
The package "visNetwork" is required.
In this case, install it first with
install.packages("visNetwork")
.
Challenge 2: What else can the visualization tell us?
Modify the workflow in _targets.R
, then run
tar_visnetwork()
again without running
tar_make()
. What color indicates that a target is out of
date?
Light blue indicates the target is out of date.
Depending on how you modified the code, any or all of the targets may now be light blue.
‘Outdated’ does not always mean ‘will be run’
Just because a target appears as light blue (is “outdated”) in the network visualization, this does not guarantee that it will be re-built during the next run. Rather, it means that at least of one the targets that it depends on has changed.
For example, if the workflow state looked like this:
A -> B* -> C -> D
where the *
indicates that B
has changed
compared to the last time the workflow was run, the network
visualization will show B
, C
, and
D
all as light blue.
But if re-running the workflow results in the exact same value for
C
as before, D
will not be re-run (will be
“skipped”).
Most of the time, a single change will cascade to the rest of the
downstream targets and cause them to be re-built, but this is not always
the case. targets
has no way of knowing ahead of time what
the actual output will be, so it cannot provide a network visualization
that completely predicts the future!
Other ways to check workflow status
The visualization is very useful, but sometimes you may be working on a server that doesn’t provide graphical output, or you just want a quick textual summary of the workflow. There are some other useful functions that can do that.
tar_outdated()
lists only the outdated targets; that is,
targets that will be built during the next run, or depend on such a
target. If everything is up to date, it will return a zero-length
character vector (character(0)
).
R
tar_outdated()
OUTPUT
character(0)
tar_progress()
shows the current status of the workflow
as a dataframe. You may find it helpful to further manipulate the
dataframe to obtain useful summaries of the workflow, for example using
dplyr
(such data manipulation is beyond the scope of this
lesson but the instructor may demonstrate its use).
R
tar_progress()
OUTPUT
# A tibble: 3 × 2
name progress
<chr> <chr>
1 penguins_csv_file skipped
2 penguins_data_raw skipped
3 penguins_data completed
Granular control of targets
It is possible to only make a particular target instead of running the entire workflow.
To do this, type the name of the target you wish to build after
tar_make()
(note that any targets required by the one you
specify will also be built). For example,
tar_make(penguins_data_raw)
would only
build penguins_data_raw
, not
penguins_data
.
Furthermore, if you want to manually “reset” a target and make it
appear out-of-date, you can do so with tar_invalidate()
.
This means that target (and any that depend on it) will be re-run next
time.
Let’s give this a try. Remember that our pipeline is currently up to
date, so tar_make()
will skip everything:
R
tar_make()
OUTPUT
✔ skipped target penguins_csv_file
✔ skipped target penguins_data_raw
✔ skipped target penguins_data
✔ skipped pipeline [0.083 seconds]
Let’s invalidate penguins_data
and run it again:
R
tar_invalidate(penguins_data)
tar_make()
OUTPUT
✔ skipped target penguins_csv_file
✔ skipped target penguins_data_raw
▶ dispatched target penguins_data
● completed target penguins_data [0.017 seconds, 1.495 kilobytes]
▶ ended pipeline [0.101 seconds]
If you want to reset everything and start fresh, you
can use tar_invalidate(everything())
(tar_invalidate()
accepts
tidyselect
expressions to specify target names).
Caution should be exercised when using granular
methods like this, though, since you may end up with your workflow in an
unexpected state. The surest way to maintain an up-to-date workflow is
to run tar_make()
frequently.
How this all works in practice
In practice, you will likely be switching between running the
workflow with tar_make()
, loading the targets you built
with tar_load()
, and editing your custom functions by
running code in an interactive R session. It takes some time to get used
to it, but soon you will feel that your code isn’t “real” until it is
embedded in a targets
workflow.
Key Points
-
targets
only runs the steps that have been affected by a change to the code -
tar_visnetwork()
shows the current state of the workflow as a network -
tar_progress()
shows the current state of the workflow as a data frame -
tar_outdated()
lists outdated targets -
tar_invalidate()
can be used to invalidate (re-run) specific targets