This lesson is being piloted (Beta version)
If you teach this lesson, please tell the authors and provide feedback by opening an issue in the source repository

Intermediate Research Software Development

Setting the Scene

Overview

Teaching: 15 min
Exercises: 0 min
Questions
  • What are we teaching in this course?

  • What motivated the selection of topics covered in the course?

Objectives
  • Setting the scene and expectations

  • Making sure everyone has all the necessary software installed

Introduction

So, you have gained basic software development skills either by self-learning or attending, e.g., a novice Software Carpentry course. You have been applying those skills for a while by writing code to help with your work and you feel comfortable developing code and troubleshooting problems. However, your software has now reached a point where there is too much code to be kept in one script. Perhaps it is involving more researchers (developers) and users, and more collaborative development effort is needed to add new functionality while ensuring previous development efforts remain functional and maintainable.

This course provides the next step in software development - it teaches some intermediate software engineering skills and best practices to help you restructure existing code and design more robust, reusable and maintainable code, automate the process of testing and verifying software correctness and support collaborations with others in a way that mimics a typical software development process within a team.

The course uses a number of different software development tools and techniques interchangeably as you would in a real life. We had to make some choices about topics and tools to teach here, based on established best practices, ease of tool installation for the audience, length of the course and other considerations. Tools used here are not mandated though: alternatives exist and we point some of them out along the way. Over time, you will develop a preference for certain tools and programming languages based on your personal taste or based on what is commonly used by your group, collaborators or community. However, the topics covered should give you a solid foundation for working on software development in a team and producing high quality software that is easier to develop and sustain in the future by yourself and others. Skills and tools taught here, while Python-specific, are transferable to other similar tools and programming languages.

The course is organised into the following sections:

Course overview diagram

Section 1: Setting up Software Environment

In the first section we are going to set up our working environment and familiarise ourselves with various tools and techniques for software development in a typical collaborative code development cycle:

Section 2: Verifying Software Correctness at Scale

Once we know our way around different code development tools, techniques and conventions, in this section we learn:

Section 3: Software Development as a Process

In this section, we step away from writing code for a bit to look at software from a higher level as a process of development and its components:

Section 4: Collaborative Software Development for Reuse

Advancing from developing code as an individual, in this section you will start working with your fellow learners on a group project (as you would do when collaborating on a software project in a team), and learn:

Section 5: Managing and Improving Software Over Its Lifetime

Finally, we move beyond just software development to managing a collaborative software project and will look into:

Before We Start

A few notes before we start.

Prerequisite Knowledge

This is an intermediate-level software development course intended for people who have already been developing code in Python (or other languages) and applying it to their own problems after gaining basic software development skills. So, it is expected for you to have some prerequisite knowledge on the topics covered, as outlined at the beginning of the lesson. Check out this quiz to help you test your prior knowledge and determine if this course is for you.

Setup, Common Issues & Fixes

Have you setup and installed all the tools and accounts required for this course? Check the list of common issues, fixes & tips if you experience any problems running any of the tools you installed - your issue may be solved there.

Compulsory and Optional Exercises

Exercises are a crucial part of this course and the narrative. They are used to reinforce the points taught and give you an opportunity to practice things on your own. Please do not be tempted to skip exercises as that will get your local software project out of sync with the course and break the narrative. Exercises that are clearly marked as “optional” can be skipped without breaking things but we advise you to go through them too, if time allows. All exercises contain solutions but, wherever possible, try and work out a solution on your own.

Outdated Screenshots

Throughout this lesson we will make use and show content from Graphical User Interface (GUI) tools (PyCharm and GitHub). These are evolving tools and platforms, always adding new features and new visual elements. Screenshots in the lesson may then become out-of-sync, refer to or show content that no longer exists or is different to what you see on your machine. If during the lesson you find screenshots that no longer match what you see or have a big discrepancy with what you see, please open an issue describing what you see and how it differs from the lesson content. Feel free to add as many screenshots as necessary to clarify the issue.

Key Points

  • This lesson focuses on core, intermediate skills covering the whole software development life-cycle that will be of most use to anyone working collaboratively on code.

  • For code development in teams - you need more than just the right tools and languages. You need a strategy (best practices) for how you’ll use these tools as a team.

  • The lesson follows on from the novice Software Carpentry lesson, but this is not a prerequisite for attending as long as you have some basic Python, command line and Git skills and you have been using them for a while to write code to help with your work.


Section 1: Setting Up Environment For Collaborative Code Development

Overview

Teaching: 10 min
Exercises: 0 min
Questions
  • What tools are needed to collaborate on code development effectively?

Objectives
  • Provide an overview of all the different tools that will be used in this course.

The first section of the course is dedicated to setting up your environment for collaborative software development and introducing the project that we will be working on throughout the course. In order to build working (research) software efficiently and to do it in collaboration with others rather than in isolation, you will have to get comfortable with using a number of different tools interchangeably as they will make your life a lot easier. There are many options when it comes to deciding which software development tools to use for your daily tasks - we will use a few of them in this course that we believe make a difference. There are sometimes multiple tools for the job - we select one to use but mention alternatives too. As you get more comfortable with different tools and their alternatives, you will select the one that is right for you based on your personal preferences or based on what your collaborators are using.

Tools needed to collaborate on code development effectively

Here is an overview of the tools we will be using.

Setup, Common Issues & Fixes

Have you setup and installed all the tools and accounts required for this course? Check the list of common issues, fixes & tips if you experience any problems running any of the tools you installed - your issue may be solved there.

Command Line & Python Virtual Development Environment

We will use the command line (also known as the command line shell/prompt/console) to run our Python code and interact with the version control tool Git and software sharing platform GitHub. We will also use command line tools venv and pip to set up a Python virtual development environment and isolate our software project from other Python projects we may work on.

Note: some Windows users experience the issue where Python hangs from Git Bash (i.e. typing python causes it to just hang with no error message or output) - see the solution to this issue.

Integrated Development Environment (IDE)

An IDE integrates a number of tools that we need to develop a software project that goes beyond a single script - including a smart code editor, a code compiler/interpreter, a debugger, etc. It will help you write well-formatted and readable code that conforms to code style guides (such as PEP8 for Python) more efficiently by giving relevant and intelligent suggestions for code completion and refactoring. IDEs often integrate command line console and version control tools - we teach them separately in this course as this knowledge can be ported to other programming languages and command line tools you may use in the future (but is applicable to the integrated versions too).

We will use PyCharm in this course - a free, open source IDE.

Git & GitHub

Git is a free and open source distributed version control system designed to save every change made to a (software) project, allowing others to collaborate and contribute. In this course, we use Git to version control our code in conjunction with GitHub for code backup and sharing. GitHub is one of the leading integrated products and social platforms for modern software development, monitoring and management - it will help us with version control, issue management, code review, code testing/Continuous Integration, and collaborative development. An important concept in collaborative development is version control workflows (i.e. how to effectively use version control on a project with others).

Python Coding Style

Most programming languages will have associated standards and conventions for how the source code should be formatted and styled. Although this sounds pedantic, it is important for maintaining the consistency and readability of code across a project. Therefore, one should be aware of these guidelines and adhere to whatever the project you are working on has specified. In Python, we will be looking at a convention called PEP8.

Let us get started with setting up our software development environment!

Key Points

  • In order to develop (write, test, debug, backup) code efficiently, you need to use a number of different tools.

  • When there is a choice of tools for a task you will have to decide which tool is right for you, which may be a matter of personal preference or what the team or community you belong to is using.


Introduction to Our Software Project

Overview

Teaching: 20 min
Exercises: 10 min
Questions
  • What is the design architecture of our example software project?

  • Why is splitting code into smaller functional units (modules) good when designing software?

Objectives
  • Use Git to obtain a working copy of our software project from GitHub.

  • Inspect the structure and architecture of our software project.

  • Understand Model-View-Controller (MVC) architecture in software design and its use in our project.

Patient Inflammation Study Project

You have joined a software development team that has been working on the patient inflammation study project developed in Python and stored on GitHub. The project analyses the data to study the effect of a new treatment for arthritis by analysing the inflammation levels in patients who have been given this treatment. It reuses the inflammation datasets from the Software Carpentry Python novice lesson.

Snapshot of the inflammation dataset

Inflammation study pipeline from the Software Carpentry Python novice lesson

What Does Patient Inflammation Data Contain?

Each dataset records inflammation measurements from a separate clinical trial of the drug, and each dataset contains information for 60 patients, who had their inflammation levels recorded (in some arbitrary units of inflammation measurement) for 40 days whilst participating in the trial. A snapshot of one of the data files is shown in the diagram above.

Each of the data files uses the popular comma-separated (CSV) format to represent the data, where:

  • each row holds inflammation measurements for a single patient
  • each column represents a successive day in the trial
  • each cell represents an inflammation reading on a given day for a patient

The project is not finished and contains some errors. You will be working on your own and in collaboration with others to fix and build on top of the existing code during the course.

Downloading Our Software Project

To start working on the project, you will first create a fork of the software project repository from GitHub within your own GitHub account and then obtain a local copy of that project (from your GitHub) on your machine.

  1. Make sure you have a GitHub account and that you have set up SSH key pair for authentication with GitHub.

    Note: while it is possible to use HTTPS with a personal access token for authentication with GitHub, the recommended and supported authentication method to use for this course is SSH with key pairs.

  2. Log into your GitHub account.
  3. Go to the software project repository in GitHub.

    Software project fork repository in GitHub

  4. Click the Fork button towards the top right of the repository’s GitHub page to create a fork of the repository under your GitHub account. Remember, you will need to be signed into GitHub for the Fork button to work.

    Note: each participant is creating their own fork of the project to work on.

    Note 2: we are creating a fork of the software project repository (instead of copying it from its template) because we want to preserve the history of all commits (with template copying you only get a snapshot of a repository at a given point in time).

  5. Make sure to select your personal account and set the name of the project to python-intermediate-inflammation (you can call it anything you like, but it may be easier for future group exercises if everyone uses the same name). Ensure that you uncheck the Copy the main branch only option. This guarantees you get all the branches from this repository needed for later exercises.

    Making a fork of the software project repository in GitHub

  6. Click the Create fork button and wait for GitHub to create the forked copy of the repository under your account.
  7. Locate the forked repository under your own GitHub account. GitHub should redirect you there automatically after creating the fork. If this does not happen, click your user icon in the top right corner and select Your Repositories from the drop-down menu, then locate your newly created fork.

    View of your own fork of the software repository in GitHub

Exercise: Obtain the Software Project Locally

Using the command line, clone the copied repository from your GitHub account into the home directory on your computer using SSH. Which command(s) would you use to get a detailed list of contents of the directory you have just cloned?

Solution

  1. Find the SSH URL of the software project repository to clone from your GitHub account. Make sure you do not clone the original repository but rather your own fork, as you should be able to push commits to it later on. Also make sure you select the SSH tab and not the HTTPS one. For this course, SSH is the preferred way of authenticating when sending your changes back to GitHub. If you have only authenticated through HTTPS in the past, please follow the guidance at the top of this section to add an SSH key to your GitHub account.

URL to clone the repository in GitHub

  1. Make sure you are located in your home directory in the command line with:
     $ cd ~
    
  2. From your home directory in the command line, do:
     $ git clone git@github.com:<YOUR_GITHUB_USERNAME>/python-intermediate-inflammation.git
    

    Make sure you are cloning your fork of the software project and not the original repository.

  3. Navigate into the cloned repository folder in your command line with:
     $ cd python-intermediate-inflammation
    

    Note: If you have accidentally copied the HTTPS URL of your repository instead of the SSH one, you can easily fix that from your project folder in the command line with:

     $ git remote set-url origin git@github.com:<YOUR_GITHUB_USERNAME>/python-intermediate-inflammation.git
    

Our Software Project’s Structure

Let’s inspect the content of the software project from the command line. From the root directory of the project, you can use the command ls -l to get a more detailed list of the contents. You should see something similar to the following.

$ cd ~/python-intermediate-inflammation
$ ls -l
total 24
-rw-r--r--   1 carpentry  users  1055 20 Apr 15:41 README.md
drwxr-xr-x  18 carpentry  users   576 20 Apr 15:41 data
drwxr-xr-x   5 carpentry  users   160 20 Apr 15:41 inflammation
-rw-r--r--   1 carpentry  users  1122 20 Apr 15:41 inflammation-analysis.py
drwxr-xr-x   4 carpentry  users   128 20 Apr 15:41 tests

As can be seen from the above, our software project contains the README file (that typically describes the project, its usage, installation, authors and how to contribute), Python script inflammation-analysis.py, and three directories - inflammation, data and tests.

The Python script inflammation-analysis.py provides the main entry point in the application, and on closer inspection, we can see that the inflammation directory contains two more Python scripts - views.py and models.py. We will have a more detailed look into these shortly.

$ ls -l inflammation
total 24
-rw-r--r--  1 alex  staff   71 29 Jun 09:59 __init__.py
-rw-r--r--  1 alex  staff  838 29 Jun 09:59 models.py
-rw-r--r--  1 alex  staff  649 25 Jun 13:13 views.py

Directory data contains several files with patients’ daily inflammation information (along with some other files):

$ ls -l data
total 264
-rw-r--r--  1 alex  staff   5365 25 Jun 13:13 inflammation-01.csv
-rw-r--r--  1 alex  staff   5314 25 Jun 13:13 inflammation-02.csv
-rw-r--r--  1 alex  staff   5127 25 Jun 13:13 inflammation-03.csv
-rw-r--r--  1 alex  staff   5367 25 Jun 13:13 inflammation-04.csv
-rw-r--r--  1 alex  staff   5345 25 Jun 13:13 inflammation-05.csv
-rw-r--r--  1 alex  staff   5330 25 Jun 13:13 inflammation-06.csv
-rw-r--r--  1 alex  staff   5342 25 Jun 13:13 inflammation-07.csv
-rw-r--r--  1 alex  staff   5127 25 Jun 13:13 inflammation-08.csv
-rw-r--r--  1 alex  staff   5327 25 Jun 13:13 inflammation-09.csv
-rw-r--r--  1 alex  staff   5342 25 Jun 13:13 inflammation-10.csv
-rw-r--r--  1 alex  staff   5127 25 Jun 13:13 inflammation-11.csv
-rw-r--r--  1 alex  staff   5340 25 Jun 13:13 inflammation-12.csv
-rw-r--r--  1 alex  staff  22554 25 Jun 13:13 python-novice-inflammation-data.zip
-rw-r--r--  1 alex  staff     12 25 Jun 13:13 small-01.csv
-rw-r--r--  1 alex  staff     15 25 Jun 13:13 small-02.csv
-rw-r--r--  1 alex  staff     12 25 Jun 13:13 small-03.csv

As previously mentioned, each of the inflammation data files contains separate trial data for 60 patients over 40 days.

Exercise: Have a Peek at the Data

Which command(s) would you use to list the contents or a first few lines of data/inflammation-01.csv file?

Solution

  1. To list the entire content of a file from the project root do: cat data/inflammation-01.csv.
  2. To list the first 5 lines of a file from the project root do: head -n 5 data/inflammation-01.csv.
0,0,1,3,1,2,4,7,8,3,3,3,10,5,7,4,7,7,12,18,6,13,11,11,7,7,4,6,8,8,4,4,5,7,3,4,2,3,0,0
0,1,2,1,2,1,3,2,2,6,10,11,5,9,4,4,7,16,8,6,18,4,12,5,12,7,11,5,11,3,3,5,4,4,5,5,1,1,0,1
0,1,1,3,3,2,6,2,5,9,5,7,4,5,4,15,5,11,9,10,19,14,12,17,7,12,11,7,4,2,10,5,4,2,2,3,2,2,1,1
0,0,2,0,4,2,2,1,6,7,10,7,9,13,8,8,15,10,10,7,17,4,4,7,6,15,6,4,9,11,3,5,6,3,3,4,2,3,2,1
0,1,1,3,3,1,3,5,2,4,4,7,6,5,3,10,8,10,6,17,9,14,9,7,13,9,12,6,7,7,9,6,3,2,2,4,2,0,1,1

Directory tests contains several tests that have been implemented already. We will be adding more tests during the course as our code grows.

$ ls -l tests
total 16
-rw-r--r--  1 alex  staff  941 18 Dec 11:42 test_models.py
-rw-r--r--  1 alex  staff  182 18 Dec 11:42 test_patient.py

An important thing to note here is that the structure of our project is not arbitrary. One of the big differences between novice and intermediate software development is planning the structure of your code. This structure includes software components and behavioural interactions between them, including how these components are laid out in a directory and file structure. A novice will often make up the structure of their code as they go along. However, for more advanced software development, we need to plan and design this structure - called a software architecture - beforehand.

Let us have a quick look into what a software architecture is and which architecture is used by our software project before we start adding more code to it.

Software Architecture

A software architecture is the fundamental structure of a software system that is decided at the beginning of project development based on its requirements and cannot be changed that easily once implemented. It refers to a “bigger picture” of a software system that describes high-level components (modules) of the system and how they interact.

In software design and development, large systems or programs are often decomposed into a set of smaller modules each with a subset of functionality. Typical examples of modules in programming are software libraries; some software libraries, such as numpy and matplotlib in Python, are bigger modules that contain several smaller sub-modules. Another example of modules are classes in object-oriented programming languages.

Programming Modules and Interfaces

Although modules are self-contained and independent elements to a large extent (they can depend on other modules), there are well-defined ways of how they interact with one another. These rules of interaction are called programming interfaces - they define how other modules (clients) can use a particular module. Typically, an interface to a module includes rules on how a module can take input from and how it gives output back to its clients. A client can be a human, in which case we also call these user interfaces. Even smaller functional units such as functions/methods have clearly defined interfaces - a function/method’s definition (also known as a signature) states what parameters it can take as input and what it returns as an output.

We are going to talk about software architecture and design a bit more in Section 3 - for now it is sufficient to know that the way our software project’s code is structured is intentional.

Our Project’s Architecture

Our software project uses the Model-View-Controller (MVC) architecture. MVC architecture divides the software logic into three interconnected modules:

In our project, inflammation-analysis.py is the Controller module that performs basic statistical analysis over patient data and provides the main entry point into the application. The View and Model modules are contained in the files views.py and models.py, respectively, and are conveniently named. Data underlying the Model is contained within the directory data - as we have seen already it contains several files with patients’ daily inflammation information.

We will revisit the software architecture and MVC topics once again in later episodes when we talk in more detail about software architecture and design. We now proceed to set up our virtual development environment and start working with the code using a more convenient graphical tool - IDE PyCharm.

Key Points

  • Programming interfaces define how individual modules within a software application interact among themselves or how the application itself interacts with its users.

  • MVC is a software design architecture which divides the application into three interconnected modules: Model (data), View (user interface), and Controller (input/output and data manipulation).

  • The software project we use throughout this course is an example of an MVC application that manipulates patients’ inflammation data and performs basic statistical analysis using Python.


Virtual Environments For Software Development

Overview

Teaching: 30 min
Exercises: 0 min
Questions
  • What are virtual environments in software development and why you should use them?

  • How can we manage Python virtual environments and external (third-party) libraries?

Objectives
  • Set up a Python virtual environment for our software project using venv and pip.

  • Run our software from the command line.

Introduction

So far we have cloned our software project from GitHub and inspected its contents and architecture a bit. We now want to run our code to see what it does - let us do that from the command line. For the most part of the course we will run our code and interact with Git from the command line. While we will develop and debug our code using the PyCharm IDE and it is possible to use Git from PyCharm too, typing commands in the command line allows you to familiarise yourself and learn it well. A bonus is that this knowledge is transferable to running code in other programming languages and is independent from any IDE you may use in the future.

If you have a little peek into our code (e.g. run cat inflammation/views.py from the project root), you will see the following two lines somewhere at the top.

from matplotlib import pyplot as plt
import numpy as np

This means that our code requires two external libraries (also called third-party packages or dependencies) - numpy and matplotlib. Python applications often use external libraries that don’t come as part of the standard Python distribution. This means that you will have to use a package manager tool to install them on your system. Applications will also sometimes need a specific version of an external library (e.g. because they were written to work with feature, class, or function that may have been updated in more recent versions), or a specific version of Python interpreter. This means that each Python application you work with may require a different setup and a set of dependencies so it is useful to be able to keep these configurations separate to avoid confusion between projects. The solution for this problem is to create a self-contained virtual environment per project, which contains a particular version of Python installation plus a number of additional external libraries.

Virtual environments are not just a feature of Python - most modern programming languages use a similar mechanism to isolate libraries or dependencies for a specific project, making it easier to develop, run, test and share code with others. Some examples include Bundler for Ruby, Conan for C++, or Maven with classpath for Java. This can also be achieved with more generic package managers like Spack, which is used extensively in HPC settings to resolve complex dependencies. In this episode, we learn how to set up a virtual environment to develop our code and manage our external dependencies.

Virtual Environments

So what exactly are virtual environments, and why use them?

A Python virtual environment helps us create an isolated working copy of a software project that uses a specific version of Python interpreter together with specific versions of a number of external libraries installed into that virtual environment. Python virtual environments are implemented as directories with a particular structure within software projects, containing links to specified dependencies allowing isolation from other software projects on your machine that may require different versions of Python or external libraries.

As more external libraries are added to your Python project over time, you can add them to its specific virtual environment and avoid a great deal of confusion by having separate (smaller) virtual environments for each project rather than one huge global environment with potential package version clashes. Another big motivator for using virtual environments is that they make sharing your code with others much easier (as we will see shortly). Here are some typical scenarios where the use of virtual environments is highly recommended (almost unavoidable):

You do not have to worry too much about specific versions of external libraries that your project depends on most of the time. Virtual environments also enable you to always use the latest available version without specifying it explicitly. They also enable you to use a specific older version of a package for your project, should you need to.

A Specific Python or Package Version is Only Ever Installed Once

Note that you will not have a separate Python or package installations for each of your projects - they will only ever be installed once on your system but will be referenced from different virtual environments.

Managing Python Virtual Environments

There are several commonly used command line tools for managing Python virtual environments:

While there are pros and cons for using each of the above, all will do the job of managing Python virtual environments for you and it may be a matter of personal preference which one you go for. In this course, we will use venv to create and manage our virtual environment (which is the preferred way for Python 3.3+). The upside is that venv virtual environments created from the command line are also recognised and picked up automatically by PyCharm IDE, as we will see in the next episode.

Managing External Packages

Part of managing your (virtual) working environment involves installing, updating and removing external packages on your system. The Python package manager tool pip is most commonly used for this - it interacts and obtains the packages from the central repository called Python Package Index (PyPI). pip can now be used with all Python distributions (including Anaconda).

A Note on Anaconda and conda

Anaconda is an open source Python distribution commonly used for scientific programming - it conveniently installs Python, package and environment management conda, and a number of commonly used scientific computing packages so you do not have to obtain them separately. conda is an independent command line tool (available separately from the Anaconda distribution too) with dual functionality: (1) it is a package manager that helps you find Python packages from remote package repositories and install them on your system, and (2) it is also a virtual environment manager. So, you can use conda for both tasks instead of using venv and pip.

Many Tools for the Job

Installing and managing Python distributions, external libraries and virtual environments is, well, complex. There is an abundance of tools for each task, each with its advantages and disadvantages, and there are different ways to achieve the same effect (and even different ways to install the same tool!). Note that each Python distribution comes with its own version of pip - and if you have several Python versions installed you have to be extra careful to use the correct pip to manage external packages for that Python version.

venv and pip are considered the de facto standards for virtual environment and package management for Python 3. However, the advantages of using Anaconda and conda are that you get (most of the) packages needed for scientific code development included with the distribution. If you are only collaborating with others who are also using Anaconda, you may find that conda satisfies all your needs. It is good, however, to be aware of all these tools, and use them accordingly. As you become more familiar with them you will realise that equivalent tools work in a similar way even though the command syntax may be different (and that there are equivalent tools for other programming languages too to which your knowledge can be ported).

Python environment hell XKCD comic

Python Environment Hell
From XKCD (Creative Commons Attribution-NonCommercial 2.5 License)

Let us have a look at how we can create and manage virtual environments from the command line using venv and manage packages using pip.

Making Sure You Can Invoke Python

You can test your Python installation from the command line with:

$ python3 --version # on Mac/Linux
$ python --version # on Windows — Windows installation comes with a python.exe file rather than a python3.exe file 

If you are using Windows and invoking python command causes your Git Bash terminal to hang with no error message or output, you may need to create an alias for the python executable python.exe, as explained in the troubleshooting section.

Creating Virtual Environments Using venv

Creating a virtual environment with venv is done by executing the following command:

$ python3 -m venv /path/to/new/virtual/environment

where /path/to/new/virtual/environment is a path to a directory where you want to place it - conventionally within your software project so they are co-located. This will create the target directory for the virtual environment (and any parent directories that don’t exist already).

What is -m Flag in python3 Command?

The Python -m flag means “module” and tells the Python interpreter to treat what follows -m as the name of a module and not as a single, executable program with the same name. Some modules (such as venv or pip) have main entry points and the -m flag can be used to invoke them on the command line via the python command. The main difference between running such modules as standalone programs (e.g. executing “venv” by running the venv command directly) versus using python3 -m command seems to be that with latter you are in full control of which Python module will be invoked (the one that came with your environment’s Python interpreter vs. some other version you may have on your system). This makes it a more reliable way to set things up correctly and avoid issues that could prove difficult to trace and debug.

For our project let us create a virtual environment called “venv”. First, ensure you are within the project root directory, then:

$ python3 -m venv venv

If you list the contents of the newly created directory “venv”, on a Mac or Linux system (slightly different on Windows as explained below) you should see something like:

$ ls -l venv
total 8
drwxr-xr-x  12 alex  staff  384  5 Oct 11:47 bin
drwxr-xr-x   2 alex  staff   64  5 Oct 11:47 include
drwxr-xr-x   3 alex  staff   96  5 Oct 11:47 lib
-rw-r--r--   1 alex  staff   90  5 Oct 11:47 pyvenv.cfg

So, running the python3 -m venv venv command created the target directory called “venv” containing:

Naming Virtual Environments

What is a good name to use for a virtual environment? Using “venv” or “.venv” as the name for an environment and storing it within the project’s directory seems to be the recommended way - this way when you come across such a subdirectory within a software project, by convention you know it contains its virtual environment details. A slight downside is that all different virtual environments on your machine then use the same name and the current one is determined by the context of the path you are currently located in. A (non-conventional) alternative is to use your project name for the name of the virtual environment, with the downside that there is nothing to indicate that such a directory contains a virtual environment. In our case, we have settled to use the name “venv” instead of “.venv” since it is not a hidden directory and we want it to be displayed by the command line when listing directory contents (the “.” in its name that would, by convention, make it hidden). In the future, you will decide what naming convention works best for you. Here are some references for each of the naming conventions:

Once you’ve created a virtual environment, you will need to activate it.

On Mac or Linux, it is done as:

$ source venv/bin/activate
(venv) $

On Windows, recall that we have Scripts directory instead of bin and activating a virtual environment is done as:

$ source venv/Scripts/activate
(venv) $

Activating the virtual environment will change your command line’s prompt to show what virtual environment you are currently using (indicated by its name in round brackets at the start of the prompt), and modify the environment so that running Python will get you the particular version of Python configured in your virtual environment.

You can verify you are using your virtual environment’s version of Python by checking the path using the command which:

(venv) $ which python3
/home/alex/python-intermediate-inflammation/venv/bin/python3

When you’re done working on your project, you can exit the environment with:

(venv) $ deactivate

If you have just done the deactivate, ensure you reactivate the environment ready for the next part:

$ source venv/bin/activate
(venv) $

Python Within A Virtual Environment

Within an active virtual environment, commands python3 and python should both refer to the version of Python 3 you created the environment with (note you may have multiple Python 3 versions installed).

However, on some machines with Python 2 installed, python command may still be hardwired to the copy of Python 2 installed outside of the virtual environment - this can cause errors and confusion.

You can always check which version of Python you are using in your virtual environment with the command which python to be absolutely sure. We continue using python3 in this material to avoid mistakes, but the command python may work for you as expected.

Note that, since our software project is being tracked by Git, the newly created virtual environment will show up in version control - we will see how to handle it using Git in one of the subsequent episodes.

Installing External Packages Using pip

We noticed earlier that our code depends on two external packages/libraries - numpy and matplotlib. In order for the code to run on your machine, you need to install these two dependencies into your virtual environment.

To install the latest version of a package with pip you use pip’s install command and specify the package’s name, e.g.:

(venv) $ python3 -m pip install numpy
(venv) $ python3 -m pip install matplotlib

or like this to install multiple packages at once for short:

(venv) $ python3 -m pip install numpy matplotlib

How About pip3 install <package-name> Command?

You may have seen or used the pip3 install <package-name> command in the past, which is shorter and perhaps more intuitive than python3 -m pip install. However, the official Pip documentation recommends python3 -m pip install and core Python developer Brett Cannon offers a more detailed explanation of edge cases when the two commands may produce different results and why python3 -m pip install is recommended. In this material, we will use python3 -m whenever we have to invoke a Python module from command line.

If you run the python3 -m pip install command on a package that is already installed, pip will notice this and do nothing.

To install a specific version of a Python package give the package name followed by == and the version number, e.g. python3 -m pip install numpy==1.21.1.

To specify a minimum version of a Python package, you can do python3 -m pip install numpy>=1.20.

To upgrade a package to the latest version, e.g. python3 -m pip install --upgrade numpy.

To display information about a particular installed package do:

(venv) $ python3 -m pip show numpy
Name: numpy
Version: 1.26.2
Summary: Fundamental package for array computing in Python
Home-page: https://numpy.org
Author: Travis E. Oliphant et al.
Author-email: 
License: Copyright (c) 2005-2023, NumPy Developers.
All rights reserved.
...
Required-by: contourpy, matplotlib

To list all packages installed with pip (in your current virtual environment):

(venv) $ python3 -m pip list
Package         Version
--------------- -------
contourpy       1.2.0
cycler          0.12.1
fonttools       4.45.0
kiwisolver      1.4.5
matplotlib      3.8.2
numpy           1.26.2
packaging       23.2
Pillow          10.1.0
pip             23.0.1
pyparsing       3.1.1
python-dateutil 2.8.2
setuptools      67.6.1
six             1.16.0

To uninstall a package installed in the virtual environment do: python3 -m pip uninstall <package-name>. You can also supply a list of packages to uninstall at the same time.

Exporting/Importing Virtual Environments Using pip

You are collaborating on a project with a team so, naturally, you will want to share your environment with your collaborators so they can easily ‘clone’ your software project with all of its dependencies and everyone can replicate equivalent virtual environments on their machines. pip has a handy way of exporting, saving and sharing virtual environments.

To export your active environment - use python3 -m pip freeze command to produce a list of packages installed in the virtual environment. A common convention is to put this list in a requirements.txt file:

(venv) $ python3 -m pip freeze > requirements.txt
(venv) $ cat requirements.txt
contourpy==1.2.0
cycler==0.12.1
fonttools==4.45.0
kiwisolver==1.4.5
matplotlib==3.8.2
numpy==1.26.2
packaging==23.2
Pillow==10.1.0
pyparsing==3.1.1
python-dateutil==2.8.2
six==1.16.0

The first of the above commands will create a requirements.txt file in your current directory. Yours may look a little different, depending on the version of the packages you have installed, as well as any differences in the packages that they themselves use.

The requirements.txt file can then be committed to a version control system (we will see how to do this using Git in one of the following episodes) and get shipped as part of your software and shared with collaborators and/or users. They can then replicate your environment and install all the necessary packages from the project root as follows:

(venv) $ python3 -m pip install -r requirements.txt

As your project grows - you may need to update your environment for a variety of reasons. For example, one of your project’s dependencies has just released a new version (dependency version number update), you need an additional package for data analysis (adding a new dependency) or you have found a better package and no longer need the older package (adding a new and removing an old dependency). What you need to do in this case (apart from installing the new and removing the packages that are no longer needed from your virtual environment) is update the contents of the requirements.txt file accordingly by re-issuing pip freeze command and propagate the updated requirements.txt file to your collaborators via your code sharing platform (e.g. GitHub).

Official Documentation

For a full list of options and commands, consult the official venv documentation and the Installing Python Modules with pip guide. Also check out the guide “Installing packages using pip and virtual environments”.

Running Python Scripts From Command Line

Congratulations! Your environment is now activated and set up to run our inflammation-analysis.py script from the command line.

You should already be located in the root of the python-intermediate-inflammation directory (if not, please navigate to it from the command line now). To run the script, type the following command:

(venv) $ python3 inflammation-analysis.py
usage: inflammation-analysis.py [-h] infiles [infiles ...]
inflammation-analysis.py: error: the following arguments are required: infiles

In the above command, we tell the command line two things:

  1. to find a Python interpreter (in this case, the one that was configured via the virtual environment), and
  2. to use it to run our script inflammation-analysis.py, which resides in the current directory.

As we can see, the Python interpreter ran our script, which threw an error - inflammation-analysis.py: error: the following arguments are required: infiles. It looks like the script expects a list of input files to process, so this is expected behaviour since we do not supply any. We will fix this error in a moment.

Optional exercises

Checkout this optional exercise to try out different virtual environment managers. Or, this exercise to customize the command line.

Key Points

  • Virtual environments keep Python versions and dependencies required by different projects separate.

  • A virtual environment is itself a directory structure.

  • Use venv to create and manage Python virtual environments.

  • Use pip to install and manage Python external (third-party) libraries.

  • pip allows you to declare all dependencies for a project in a separate file (by convention called requirements.txt) which can be shared with collaborators/users and used to replicate a virtual environment.

  • Use python3 -m pip freeze > requirements.txt to take snapshot of your project’s dependencies.

  • Use python3 -m pip install -r requirements.txt to replicate someone else’s virtual environment on your machine from the requirements.txt file.


Integrated Software Development Environments

Overview

Teaching: 25 min
Exercises: 10 min
Questions
  • What are Integrated Development Environments (IDEs)?

  • What are the advantages of using IDEs for software development?

Objectives
  • Set up a (virtual) development environment in PyCharm

  • Use PyCharm to run a Python script

Introduction

As we have seen in the previous episode - even a simple software project is typically split into smaller functional units and modules, which are kept in separate files and subdirectories. As your code starts to grow and becomes more complex, it will involve many different files and various external libraries. You will need an application to help you manage all the complexities of, and provide you with some useful (visual) facilities for, the software development process. Such clever and useful graphical software development applications are called Integrated Development Environments (IDEs).

Integrated Development Environments

An IDE normally consists of at least a source code editor, build automation tools and a debugger. The boundaries between modern IDEs and other aspects of the broader software development process are often blurred. Nowadays IDEs also offer version control support, tools to construct graphical user interfaces (GUI) and web browser integration for web app development, source code inspection for dependencies and many other useful functionalities. The following is a list of the most commonly seen IDE features:

IDEs are extremely useful and modern software development would be very hard without them. There are a number of IDEs available for Python development; a good overview is available from the Python Project Wiki. In addition to IDEs, there are also a number of code editors that have Python support. Code editors can be as simple as a text editor with syntax highlighting and code formatting capabilities (e.g., GNU EMACS, Vi/Vim). Most good code editors can also execute code and control a debugger, and some can also interact with a version control system. Compared to an IDE, a good dedicated code editor is usually smaller and quicker, but often less feature-rich. You will have to decide which one is the best for you - in this course we will learn how to use PyCharm, a free, open source Python IDE. Some popular alternatives include free and open source IDE Spyder and Microsoft’s free Visual Studio Code (VS Code).

Using VS Code for This Course

If you want to use VS Code as your IDE for this course, there is a separate extras episode to help you set up. The instructions for PyCharm in the course will not apply to you verbatim but there is an equivalent functionality in VS Code for each of the actions we ask you to do in PyCharm.

Using the PyCharm IDE

Let us open our project in PyCharm now and familiarise ourselves with some commonly used features.

Opening a Software Project

If you do not have PyCharm running yet, start it up now. You can skip the initial configuration steps which just go through selecting a theme and other aspects. You should be presented with a dialog box that asks you what you want to do, e.g. Create New Project, Open, or Check out from Version Control.

Select Open and find the software project directory python-intermediate-inflammation you cloned earlier. This directory is now the current working directory for PyCharm, so when we run scripts from PyCharm, this is the directory they will run from.

PyCharm will show you a ‘Tip of the Day’ window which you can safely ignore and close for now. You may also get a warning ‘No Python interpreter configured for the project’ - we will deal with this shortly after we familiarise ourselves with the PyCharm environment. You will notice the IDE shows you a project/file navigator window on the left hand side, to traverse and select the files (and any subdirectories) within the working directory, and an editor window on the right. At the bottom, you would typically have a panel for version control, terminal (the command line within PyCharm) and a TODO list.

View of an opened project in PyCharm

Select the inflammation-analysis.py file in the project navigator on the left so that its contents are displayed in the editor window. You may notice a warning about the missing Python interpreter at the top of the editor panel showing inflammation-analysis.py file - this is one of the first things you will have to configure for your project before you can do any work.

Missing Python Interpreter Warning in PyCharm

You may take the shortcut and click on one of the offered options above but we want to take you through the whole process of setting up your environment in PyCharm as this is important conceptually.

Configuring a Virtual Environment in PyCharm

Before you can run the code from PyCharm, you need to explicitly specify the path to the Python interpreter on your system. The same goes for any dependencies your code may have - you need to tell PyCharm where to find them - much like we did from the command line in the previous episode. Luckily for us, we have already set up a virtual environment for our project from the command line and PyCharm is clever enough to understand it.

Adding a Python Interpreter

  1. Select either PyCharm > Settings (Mac) or File > Settings (Linux, Windows).
  2. In the window that appears, select Project: python-intermediate-inflammation > Python Interpreter from the left. You’ll see a number of Python packages displayed as a list, and importantly above that, the current Python interpreter that is being used. These may be blank or set to <No interpreter>, or possibly the default version of Python installed on your system, e.g. Python 2.7 /usr/bin/python2.7, which we do not want to use in this instance.
  3. Select the cog-like button in the top right, then Add... (or Add Local... depending on your PyCharm version). An Add Python Interpreter window will appear.
  4. Select Virtualenv Environment from the list on the left and ensure that Existing environment checkbox is selected within the popup window. In the Interpreter field point to the Python 3 executable inside your virtual environment’s bin directory (make sure you navigate to it and select it from the file browser rather than just accept the default offered by PyCharm). Note that there is also an option to create a new virtual environment, but we are not using that option as we want to reuse the one we created from the command line in the previous episode. Configuring Python Interpreter in PyCharm
  5. Select Make available to all projects checkbox so we can also use this environment for other projects if we wish.
  6. Select OK in the Add Python Interpreter window. Back in the Preferences window, you should select “Python 3.11 (python-intermediate-inflammation)” or similar (that you have just added) from the Project Interpreter drop-down list.

Note that a number of external libraries have magically appeared under the “Python 3.11 (python-intermediate-inflammation)” interpreter, including numpy and matplotlib. PyCharm has recognised the virtual environment we created from the command line using venv and has added these libraries effectively replicating our virtual environment in PyCharm (referred to as “Python 3.11 (python-intermediate-inflammation)”).

Packages Currently Installed in a Virtual Environment in PyCharm

Also note that, although the names are not the same - this is one and the same virtual environment and changes done to it in PyCharm will propagate to the command line and vice versa. Let us see this in action through the following exercise.

Exercise: Compare External Libraries in the Command Line and PyCharm

Can you recall two places where information about our project’s dependencies can be found from the command line? Compare that information with the equivalent configuration in PyCharm.

Hint: We can use an argument to pip, or find the packages directly in a subdirectory of our virtual environment directory “venv”.

Solution

From the previous episode, you may remember that we can get the list of packages in the current virtual environment using pip:

(venv) $ python3 -m pip list
Package         Version
--------------- -------
contourpy       1.2.0
cycler          0.12.1
fonttools       4.45.0
kiwisolver      1.4.5
matplotlib      3.8.2
numpy           1.26.2
packaging       23.2
Pillow          10.1.0
pip             23.0.1
pyparsing       3.1.1
python-dateutil 2.8.2
setuptools      67.6.1
six             1.16.0

However, python3 -m pip list shows all the packages in the virtual environment - if we want to see only the list of packages that we installed, we can use the python3 -m pip freeze command instead:

(venv) $ python3 -m pip freeze
contourpy==1.2.0
cycler==0.12.1
fonttools==4.45.0
kiwisolver==1.4.5
matplotlib==3.8.2
numpy==1.26.2
packaging==23.2
Pillow==10.1.0
pyparsing==3.1.1
python-dateutil==2.8.2
six==1.16.0

We see the pip package in python3 -m pip list but not in python3 -m pip freeze as we did not install it using pip. Remember that we use python3 -m pip freeze to update our requirements.txt file, to keep a list of the packages our virtual environment includes. Python will not do this automatically; we have to manually update the file when our requirements change using:

python3 -m pip freeze > requirements.txt

If we want, we can also see the list of packages directly in the following subdirectory of venv:

(venv) $ ls -l venv/lib/python3.11/site-packages
total 88
drwxr-xr-x  105 alex  staff   3360 20 Nov 15:34 PIL
drwxr-xr-x    9 alex  staff    288 20 Nov 15:34 Pillow-10.1.0.dist-info
drwxr-xr-x    4 alex  staff    128 20 Nov 15:34 __pycache__
drwxr-xr-x    5 alex  staff    160 20 Nov 15:32 _distutils_hack
drwxr-xr-x   16 alex  staff    512 20 Nov 15:34 contourpy
drwxr-xr-x    7 alex  staff    224 20 Nov 15:34 contourpy-1.2.0.dist-info
drwxr-xr-x    5 alex  staff    160 20 Nov 15:34 cycler
drwxr-xr-x    8 alex  staff    256 20 Nov 15:34 cycler-0.12.1.dist-info
drwxr-xr-x   14 alex  staff    448 20 Nov 15:34 dateutil
-rw-r--r--    1 alex  staff    151 20 Nov 15:32 distutils-precedence.pth
drwxr-xr-x   33 alex  staff   1056 20 Nov 15:34 fontTools
drwxr-xr-x    9 alex  staff    288 20 Nov 15:34 fonttools-4.45.0.dist-info
drwxr-xr-x    8 alex  staff    256 20 Nov 15:34 kiwisolver
drwxr-xr-x    8 alex  staff    256 20 Nov 15:34 kiwisolver-1.4.5.dist-info
drwxr-xr-x  150 alex  staff   4800 20 Nov 15:34 matplotlib
drwxr-xr-x   20 alex  staff    640 20 Nov 15:34 matplotlib-3.8.2.dist-info
drwxr-xr-x    5 alex  staff    160 20 Nov 15:34 mpl_toolkits
drwxr-xr-x   43 alex  staff   1376 20 Nov 15:34 numpy
drwxr-xr-x    9 alex  staff    288 20 Nov 15:34 numpy-1.26.2.dist-info
drwxr-xr-x   18 alex  staff    576 20 Nov 15:34 packaging
drwxr-xr-x    9 alex  staff    288 20 Nov 15:34 packaging-23.2.dist-info
drwxr-xr-x    9 alex  staff    288 20 Nov 15:32 pip
drwxr-xr-x   10 alex  staff    320 20 Nov 15:33 pip-23.0.1.dist-info
drwxr-xr-x    6 alex  staff    192 20 Nov 15:32 pkg_resources
-rw-r--r--    1 alex  staff     90 20 Nov 15:34 pylab.py
drwxr-xr-x   15 alex  staff    480 20 Nov 15:34 pyparsing
drwxr-xr-x    7 alex  staff    224 20 Nov 15:34 pyparsing-3.1.1.dist-info
drwxr-xr-x    9 alex  staff    288 20 Nov 15:34 python_dateutil-2.8.2.dist-info
drwxr-xr-x   49 alex  staff   1568 20 Nov 15:32 setuptools
drwxr-xr-x   10 alex  staff    320 20 Nov 15:32 setuptools-67.6.1.dist-info
drwxr-xr-x    8 alex  staff    256 20 Nov 15:34 six-1.16.0.dist-info
-rw-r--r--    1 alex  staff  34549 20 Nov 15:34 six.py

Finally, if you look at both the contents of venv/lib/python3.11/site-packages and requirements.txt and compare that with the packages shown in PyCharm’s Python Interpreter Configuration - you will see that they all contain equivalent information.

Adding an External Library

We have already added packages numpy and matplotlib to our virtual environment from the command line in the previous episode, so we are up-to-date with all external libraries we require at the moment. However, we will need library pytest soon to implement tests for our code. We will use this opportunity to install it from PyCharm in order to see an alternative way of doing this and how it propagates to the command line.

  1. Select either PyCharm > Settings (Mac) or File > Settings (Linux, Windows).
  2. In the preferences window that appears, select Project: python-intermediate-inflammation > Project Interpreter from the left.
  3. Select the + icon at the top of the window. In the window that appears, search for the name of the library (pytest), select it from the list, then select Install Package. Once it finishes installing, you can close that window. Installing a package in PyCharm
  4. Select OK in the Preferences/Settings window.

It may take a few minutes for PyCharm to install it. After it is done, the pytest library is added to our virtual environment. You can also verify this from the command line by listing the venv/lib/python3.11/site-packages subdirectory. Note, however, that requirements.txt is not updated - as we mentioned earlier this is something you have to do manually. Let us do this as an exercise.

Exercise: Update requirements.txt After Adding a New Dependency

Export the newly updated virtual environment into requirements.txt file.

Solution

Let us verify first that the newly installed library pytest is appearing in our virtual environment but not in requirements.txt. First, let us check the list of installed packages:

(venv) $ python3 -m pip list
Package         Version
--------------- -------
contourpy       1.2.0
cycler          0.12.1
fonttools       4.45.0
iniconfig       2.0.0
kiwisolver      1.4.5
matplotlib      3.8.2
numpy           1.26.2
packaging       23.2
Pillow          10.1.0
pip             23.0.1
pluggy          1.3.0
pyparsing       3.1.1
pytest          7.4.3
python-dateutil 2.8.2
setuptools      67.6.1
six             1.16.0

We can see the pytest library appearing in the listing above. However, if we do:

(venv) $ cat requirements.txt
contourpy==1.2.0
cycler==0.12.1
fonttools==4.45.0
kiwisolver==1.4.5
matplotlib==3.8.2
numpy==1.26.2
packaging==23.2
Pillow==10.1.0
pyparsing==3.1.1
python-dateutil==2.8.2
six==1.16.0

pytest is missing from requirements.txt. To add it, we need to update the file by repeating the command:

(venv) $ python3 -m pip freeze > requirements.txt

pytest is now present in requirements.txt:

contourpy==1.2.0
cycler==0.12.1
fonttools==4.45.0
iniconfig==2.0.0
kiwisolver==1.4.5
matplotlib==3.8.2
numpy==1.26.2
packaging==23.2
Pillow==10.1.0
pluggy==1.3.0
pyparsing==3.1.1
pytest==7.4.3
python-dateutil==2.8.2
six==1.16.0

Adding a Run Configuration for Our Project

Having configured a virtual environment, we now need to tell PyCharm to use it for our project. This is done by creating and adding a Run Configuration to a project. Run Configurations in PyCharm are named sets of startup properties that define which main Python script to execute and what (optional) runtime parameters/environment variables (i.e. additional configuration options) to pass and use on top of virtual environments.

  1. To add a new Run Configuration for a project - select Run > Edit Configurations... from the top menu.
  2. Select Add new run configuration... then Python. Adding a Run Configuration in PyCharm
  3. In the new popup window, in the Script path field select the folder button and find and select inflammation-analysis.py. This tells PyCharm which script to run (i.e. what the main entry point to our application is). Run Configuration Popup in PyCharm
  4. In the same window, select “Python 3.11 (python-intermediate-inflammation)” (i.e. the virtual environment and interpreter you configured earlier in this episode) in the Python interpreter field.
  5. You can give this run configuration a name at the top of the window if you like - e.g. let us name it inflammation analysis.
  6. You can optionally configure run parameters and environment variables in the same window - we do not need this at the moment.
  7. Select Apply to confirm these settings.

Virtual Environments & Run Configurations in PyCharm

We configured the Python interpreter to use for our project by pointing PyCharm to the virtual environment we created from the command line (which encapsulates a Python interpreter and external libraries our code needs to run). Recall that you can create several virtual environments based on the same Python interpreter but with different external libraries - this is helpful when you need to develop different types of applications. For example, you can create one virtual environment based on Python 3.11 to develop Django Web applications and another virtual environment based on the same Python 3.11 to work with scientific libraries.

Run Configurations provided by PyCharm are one extra layer on top of virtual environments - you can vary a run configuration each time your code is executed and you can have separate configurations for running, debugging and testing your code.

Now you know how to configure and manipulate your environment in both tools (command line and PyCharm), which is a useful parallel to be aware of. Let us have a look at some other features afforded to us by PyCharm.

Syntax Highlighting

The first thing you may notice is that code is displayed using different colours. Syntax highlighting is a feature that displays source code terms in different colours and fonts according to the syntax category the highlighted term belongs to. It also makes syntax errors visually distinct. Highlighting does not affect the meaning of the code itself - it is intended only for humans to make reading code and finding errors easier.

Syntax Highlighting Functionality in PyCharm

Code Completion

As you start typing code, PyCharm will offer to complete some of the code for you in the form of an auto completion popup. This is a context-aware code completion feature that speeds up the process of coding (e.g. reducing typos and other common mistakes) by offering available variable names, functions from available packages, parameters of functions, hints related to syntax errors, etc.

Code Completion Functionality in PyCharm

Code Definition & Documentation References

You will often need code reference information to help you code. PyCharm shows this useful information, such as definitions of symbols (e.g. functions, parameters, classes, fields, and methods) and documentation references by means of quick popups and inline tooltips.

For a selected piece of code, you can access various code reference information from the View menu (or via various keyboard shortcuts), including:

Code References Functionality in PyCharm

You can search for a text string within a project, use different scopes to narrow your search process, use regular expressions for complex searches, include/exclude certain files from your search, find usages and occurrences. To find a search string in the whole project:

  1. From the main menu, select Edit | Find | Find in Path ... (or Edit | Find | Find in Files... depending on your version of PyCharm).
  2. Type your search string in the search field of the popup. Alternatively, in the editor, highlight the string you want to find and press Command-Shift-F (on Mac) or Control-Shift-F (on Windows). PyCharm places the highlighted string into the search field of the popup.

    Code Search Functionality in PyCharm If you need, specify the additional options in the popup. PyCharm will list the search strings and all the files that contain them.

  3. Check the results in the preview area of the dialog where you can replace the search string or select another string, or press Command-Shift-F (on Mac) or Control-Shift-F (on Windows) again to start a new search.
  4. To see the list of occurrences in a separate panel, click the Open in Find Window button in the bottom right corner. The find panel will appear at the bottom of the main window; use this panel and its options to group the results, preview them, and work with them further.

    Code Search Functionality in PyCharm

Version Control

PyCharm supports a directory-based versioning model, which means that each project directory can be associated with a different version control system. Our project was already under Git version control and PyCharm recognised it. It is also possible to add an unversioned project directory to version control directly from PyCharm.

During this course, we will do all our version control commands from the command line but it is worth noting that PyCharm supports a comprehensive subset of Git commands (i.e. it is possible to perform a set of common Git commands from PyCharm but not all). A very useful version control feature in PyCharm is graphically comparing changes you made locally to a file with the version of the file in a repository, a different commit version or a version in a different branch - this is something that cannot be done equally well from the text-based command line.

You can get a full documentation on PyCharm’s built-in version control support online.

Version Control Functionality in PyCharm

Running Scripts in PyCharm

We have configured our environment and explored some of the most commonly used PyCharm features and are now ready to run our script from PyCharm! To do so, right-click the inflammation-analysis.py file in the PyCharm project/file navigator on the left, and select Run 'inflammation analysis' (i.e. the Run Configuration we created earlier).

Running a script from PyCharm

The script will run in a terminal window at the bottom of the IDE window and display something like:

/Users/alex/work/python-intermediate-inflammation/venv/bin/python /Users/alex/work/python-intermediate-inflammation/inflammation-analysis.py
usage: inflammation-analysis.py [-h] infiles [infiles ...]
inflammation-analysis.py: error: the following arguments are required: infiles

Process finished with exit code 2

This is the same error we got when running the script from the command line. We will get back to this error shortly - for now, the good thing is that we managed to set up our project for development both from the command line and PyCharm and are getting the same outputs. Before we move on to fixing errors and writing more code, Let us have a look at the last set of tools for collaborative code development which we will be using in this course - Git and GitHub.

Optional exercises

Checkout this optional exercise to try out different IDEs and code editors.

Key Points

  • An IDE is an application that provides a comprehensive set of facilities for software development, including syntax highlighting, code search and completion, version control, testing and debugging.

  • PyCharm recognises virtual environments configured from the command line using venv and pip.


Software Development Using Git and GitHub

Overview

Teaching: 35 min
Exercises: 0 min
Questions
  • What are Git branches and why are they useful for code development?

  • What are some best practices when developing software collaboratively using Git?

Objectives
  • Commit changes in a software project to a local repository and publish them in a remote repository on GitHub

  • Create branches for managing different threads of code development

  • Learn to use feature branch workflow to effectively collaborate with a team on a software project

Introduction

So far we have checked out our software project from GitHub and used command line tools to configure a virtual environment for our project and run our code. We have also familiarised ourselves with PyCharm - a graphical tool we will use for code development, testing and debugging. We are now going to start using another set of tools from the collaborative code development toolbox - namely, the version control system Git and code sharing platform GitHub. These two will enable us to track changes to our code and share it with others.

You may recall that we have already made some changes to our project locally - we created a virtual environment in the directory called “venv” and exported it to the requirements.txt file. We should now decide which of those changes we want to check in and share with others in our team. This is a typical software development workflow - you work locally on code, test it to make sure it works correctly and as expected, then record your changes using version control and share your work with others via a shared and centrally backed-up repository.

Firstly, let us remind ourselves how to work with Git from the command line.

Git Refresher

Git is a version control system for tracking changes in computer files and coordinating work on those files among multiple people. It is primarily used for source code management in software development but it can be used to track changes in files in general - it is particularly effective for tracking text-based files (e.g. source code files, CSV, Markdown, HTML, CSS, Tex, etc. files).

Git has several important characteristics:

The diagram below shows a typical software development lifecycle with Git (in our case starting from making changes in a local branch that “tracks” a remote branch) and the commonly used commands to interact with different parts of the Git infrastructure, including:

Development lifecycle with Git, containing Git commands add, commit, push, fetch, restore, merge and pull

Software development lifecycle with Git

Checking-in Changes to Our Project

Let us check-in the changes we have done to our project so far. The first thing to do upon navigating into our software project’s directory root is to check the current status of our local working directory and repository.

$ git status
On branch main
Your branch is up to date with 'origin/main'.

Untracked files:
  (use "git add <file>..." to include in what will be committed)
	requirements.txt
	venv/

nothing added to commit but untracked files present (use "git add" to track)

As expected, Git is telling us that we have some untracked files - requirements.txt and directory “venv” - present in our working directory which we have not staged nor committed to our local repository yet. You do not want to commit the newly created directory “venv” and share it with others because this directory is specific to your machine and setup only (i.e. it contains local paths to libraries on your system that most likely would not work on any other machine). You do, however, want to share requirements.txt with your team as this file can be used to replicate the virtual environment on your collaborators’ systems.

To tell Git to intentionally ignore and not track certain files and directories, you need to specify them in the .gitignore text file in the project root. Our project already has .gitignore, but in cases where you do not have it - you can simply create it yourself. In our case, we want to tell Git to ignore the “venv” directory (and “.venv” as another naming convention for directories containing virtual environments) and stop notifying us about it. Edit your .gitignore file in PyCharm and add a line containing “venv/” and another one containing “.venv/”. It does not matter much in this case where within the file you add these lines, so let us do it at the end. Your .gitignore should look something like this:

# IDEs
.vscode/
.idea/

# Intermediate Coverage file
.coverage

# Output files
*.png

# Python runtime
*.pyc
*.egg-info
.pytest_cache

# Virtual environments
venv/
.venv/

You may notice that we are already not tracking certain files and directories with useful comments about what exactly we are ignoring. You may also notice that each line in .gitignore is actually a pattern, so you can ignore multiple files that match a pattern (e.g. “*.png” will ignore all PNG files in the current directory).

If you run the git status command now, you will notice that Git has cleverly understood that you want to ignore changes to the “venv” directory so it is not warning us about it any more. However, it has now detected a change to .gitignore file that needs to be committed.

$ git status
On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git restore <file>..." to discard changes in working directory)
	modified:   .gitignore

Untracked files:
  (use "git add <file>..." to include in what will be committed)
	requirements.txt

no changes added to commit (use "git add" and/or "git commit -a")

To commit the changes .gitignore and requirements.txt to the local repository, we first have to add these files to staging area to prepare them for committing. We can do that at the same time as:

$ git add .gitignore requirements.txt

Now we can commit them to the local repository with:

$ git commit -m "Initial commit of requirements.txt. Ignoring virtual env. folder."

Remember to use meaningful messages for your commits.

So far we have been working in isolation - all the changes we have done are still only stored locally on our individual machines. In order to share our work with others, we should push our changes to the remote repository on GitHub. Before we push our changes however, we should first do a git pull. This is considered best practice, since any changes made to the repository - notably by other people - may impact the changes we are about to push. This could occur, for example, by two collaborators making different changes to the same lines in a file. By pulling first, we are made aware of any changes made by others, in particular if there are any conflicts between their changes and ours.

$ git pull

Now we have ensured our repository is synchronised with the remote one, we can now push our changes:

$ git push origin main

In the above command, origin is an alias for the remote repository you used when cloning the project locally (it is called that by convention and set up automatically by Git when you run git clone remote_url command to replicate a remote repository locally); main is the name of our main (and currently only) development branch.

GitHub Authentication/Authorisation Error

If, at this point (i.e. the first time you try to write to a remote repository on GitHub), you get a warning/error that HTTPS access is deprecated, or a personal access token is required, then you have cloned the repository using HTTPS and not SSH. You should revisit the instructions on setting up your GitHub for SSH and key pair authentication and can fix this from the command line by changing the remote repository’s HTTPS URL to its SSH equivalent:

$ git remote set-url origin git@github.com:<YOUR_GITHUB_USERNAME>/python-intermediate-inflammation.git

Git Remotes

Note that systems like Git allow us to synchronise work between any two or more copies of the same repository - the ones that are not located on your machine are “Git remotes” for you. In practice, though, it is easiest to agree with your collaborators to use one copy as a central hub (such as GitHub or GitLab), where everyone pushes their changes to. This also avoid risks associated with keeping the “central copy” on someone’s laptop. You can have more than one remote configured for your local repository, each of which generally is either read-only or read/write for you. Collaborating with others involves managing these remote repositories and pushing and pulling information to and from them when you need to share work.

git-distributed

Git - distributed version control system
From W3Docs (freely available)

Git Branches

When we do git status, Git also tells us that we are currently on the main branch of the project. A branch is one version of your project (the files in your repository) that can contain its own set of commits. We can create a new branch, make changes to the code which we then commit to the branch, and, once we are happy with those changes, merge them back to the main branch. To see what other branches are available, do:

$ git branch
* main

At the moment, there is only one branch (main) and hence only one version of the code available. When you create a Git repository for the first time, by default you only get one version (i.e. branch) - main. Let us have a look at why having different branches might be useful.

Feature Branch Software Development Workflow

While it is technically OK to commit your changes directly to main branch, and you may often find yourself doing so for some minor changes, the best practice is to use a new branch for each separate and self-contained unit/piece of work you want to add to the project. This unit of work is also often called a feature and the branch where you develop it is called a feature branch. Each feature branch should have its own meaningful name - indicating its purpose (e.g. “issue23-fix”). If we keep making changes and pushing them directly to main branch on GitHub, then anyone who downloads our software from there will get all of our work in progress - whether or not it is ready to use! So, working on a separate branch for each feature you are adding is good for several reasons:

Branches are commonly used as part of a feature-branch workflow, shown in the diagram below.

Git feature branch workflow diagram

Git feature branches
Adapted from Git Tutorial by sillevl (Creative Commons Attribution 4.0 International License)

In the software development workflow, we typically have a main branch which is the version of the code that is tested, stable and reliable. Then, we normally have a development branch (called develop or dev by convention) that we use for work-in-progress code. As we work on adding new features to the code, we create new feature branches that first get merged into develop after a thorough testing process. After even more testing - develop branch will get merged into main. The points when feature branches are merged to develop, and develop to main depend entirely on the practice/strategy established in the team. For example, for smaller projects (e.g. if you are working alone on a project or in a very small team), feature branches sometimes get directly merged into main upon testing, skipping the develop branch step. In other projects, the merge into main happens only at the point of making a new software release. Whichever is the case for you, a good rule of thumb is - nothing that is broken should be in main.

Creating Branches

Let us create a develop branch to work on:

$ git branch develop

This command does not give any output, but if we run git branch again, without giving it a new branch name, we can see the list of branches we have - including the new one we have just made.

$ git branch
    develop
  * main

The * indicates the currently active branch. So how do we switch to our new branch? We use the git switch command with the name of the branch:

$ git switch develop
Switched to branch 'develop'

Create and Switch to Branch Shortcut

A shortcut to create a new branch and immediately switch to it:

$ git switch -c develop

Updating Branches

If we start updating and committing files now, the commits will happen on the develop branch and will not affect the version of the code in main. We add and commit things to develop branch in the same way as we do to main.

Let us make a small modification to inflammation/models.py in PyCharm, and, say, change the spelling of “2d” to “2D” in docstrings for functions daily_mean(), daily_max() and daily_min() to see updating branches in action.

If we do:

$ git status
   On branch develop
   Changes not staged for commit:
     (use "git add <file>..." to update what will be committed)
     (use "git restore <file>..." to discard changes in working directory)

   	modified:   inflammation/models.py

   no changes added to commit (use "git add" and/or "git commit -a")

Git is telling us that we are on branch develop and which tracked files have been modified in our working directory.

We can now add and commit the changes in the usual way.

$ git add inflammation/models.py
$ git commit -m "Spelling fix"

Currently Active Branch

Remember, add and commit commands always act on the currently active branch. You have to be careful and aware of which branch you are working with at any given moment. git status can help with that, and you will find yourself invoking it very often.

Pushing New Branch Remotely

We push the contents of the develop branch to GitHub in the same way as we pushed the main branch. However, as we have just created this branch locally, it still does not exist in our remote repository. You can check that in GitHub by listing all branches.

Software project's main branch

To push a new local branch remotely for the first time, you could use the -u flag and the name of the branch you are creating and pushing to:

$ git push -u origin develop

Git Push With -u Flag

Using the -u switch with the git push command is a handy shortcut for: (1) creating the new remote branch and (2) setting your local branch to automatically track the remote one at the same time. You need to use the -u switch only once to set up that association between your branch and the remote one explicitly. After that you could simply use git push without specifying the remote repository, if you wished so. We still prefer to explicitly state this information in commands.

Let us confirm that the new branch develop now exist remotely on GitHub too. From the Code tab in your repository in GitHub, click the branch dropdown menu (currently showing the default branch main). You should see your develop branch in the list too.

Software project's develop branch

You may also have noticed GitHub’s notification about the latest push to your develop branch just on top of the repository files and branches drop-down menu.

Now the others can check out the develop branch too and continue to develop code on it.

After the initial push of the new branch, each next time we push to it in the usual manner (i.e. without the -u switch):

$ git push origin develop

What is the Relationship Between Originating and New Branches?

it is natural to think that new branches have a parent/child relationship with their originating branch, but in actual Git terms, branches themselves do not have parents but single commits do. Any commit can have zero parents (a root, or initial, commit), one parent (a regular commit), or multiple parents (a merge commit), and using this structure, we can build a ‘view’ of branches from a set of commits and their relationships. A common way to look at it is that Git branches are really only lightweight, movable pointers to commits. So as a new commit is added to a branch, the branch pointer is moved to the new commit.

What this means is that when you accomplish a merge between two branches, Git is able to determine the common ‘commit ancestor’ through the commits in a ‘branch’, and use that common ancestor to determine which commits need to be merged onto the destination branch. It also means that, in theory, you could merge any branch with any other at any time… although it may not make sense to do so!

Merging Into Main Branch

Once you have tested your changes on the develop branch, you will want to merge them onto the main branch. To do so, make sure you have committed all your changes on the develop branch and then switch to main:

$ git switch main
Switched to branch 'main'
Your branch is up to date with 'origin/main'.

To merge the develop branch on top of main do:

$ git merge develop
Updating 05e1ffb..be60389
Fast-forward
 inflammation/models.py | 6 +++---
 1 files changed, 3 insertions(+), 3 deletions(-)

If there are no conflicts, Git will merge the branches without complaining and replay all commits from develop on top of the last commit from main. If there are merge conflicts (e.g. a team collaborator modified the same portion of the same file you are working on and checked in their changes before you), the particular files with conflicts will be marked and you will need to resolve those conflicts and commit the changes before attempting to merge again. Since we have no conflicts, we can now push the main branch to the remote repository:

$ git push origin main

All Branches Are Equal

In Git, all branches are equal - there is nothing special about the main branch. It is called that by convention and is created by default, but it can also be called something else. A good example is gh-pages branch which is often the source branch for website projects hosted on GitHub (rather than main).

Keeping Main Branch Stable

Good software development practice is to keep the main branch stable while you and the team develop and test new functionalities on feature branches (which can be done in parallel and independently by different team members). The next step is to merge feature branches onto the develop branch, where more testing can occur to verify that the new features work well with the rest of the code (and not just in isolation). We talk more about different types of code testing in one of the following episodes.

Key Points

  • A branch is one version of your project that can contain its own set of commits.

  • Feature branches enable us to develop / explore / test new code features without affecting the stable main code.


Python Code Style Conventions

Overview

Teaching: 20 min
Exercises: 20 min
Questions
  • Why should you follow software code style conventions?

  • Who is setting code style conventions?

  • What code style conventions exist for Python?

Objectives
  • Understand the benefits of following community coding conventions

Introduction

We now have all the tools we need for software development and are raring to go. But before you dive into writing some more code and sharing it with others, ask yourself what kind of code should you be writing and publishing? It may be worth spending some time learning a bit about Python coding style conventions to make sure that your code is consistently formatted and readable by yourself and others.

“Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” - Martin Fowler, British software engineer, author and international speaker on software development

Python Coding Style Guide

One of the most important things we can do to make sure our code is readable by other developers (and ourselves a few months down the line) is to make sure that it is descriptive, cleanly and consistently formatted and uses sensible, descriptive names for variable, function and module names. In order to help us format our code, we generally follow guidelines known as a style guide. A style guide is a set of conventions that we agree upon with our colleagues or community, to ensure that everyone contributing to the same project is producing code which looks similar in style. While a group of developers may choose to write and agree upon a new style guide unique to each project, in practice many programming languages have a single style guide which is adopted almost universally by the communities around the world. In Python, although we do have a choice of style guides available, the PEP 8 style guide is most commonly used. PEP here stands for Python Enhancement Proposals; PEPs are design documents for the Python community, typically specifications or conventions for how to do something in Python, a description of a new feature in Python, etc.

Style consistency

One of the key insights from Guido van Rossum, the creator of the Python programming language and one of the PEP 8 authors, is that code is read much more often than it is written. Style guidelines are intended to improve the readability of code and make it consistent across the wide spectrum of Python code. Consistency with the style guide is important. Consistency within a project is more important. Consistency within one module or function is the most important. However, know when to be inconsistent - sometimes style guide recommendations are just not applicable. When in doubt, use your best judgment. Look at other examples and decide what looks best. And do not hesitate to ask!

As we have already covered in the episode on PyCharm IDE, PyCharm highlights the language constructs (reserved words) and syntax errors to help us with coding. PyCharm also gives us recommendations for formatting the code - these recommendations are mostly taken from the PEP 8 style guide.

A full list of style guidelines for this style is available from the PEP 8 website; here we highlight a few.

Indentation

Python is a kind of language that uses indentation as a way of grouping statements that belong to a particular block of code. Spaces are the recommended indentation method in Python code. The guideline is to use 4 spaces per indentation level - so 4 spaces on level one, 8 spaces on level two and so on. Many people prefer the use of tabs to spaces to indent the code for many reasons (e.g. additional typing, easy to introduce an error by missing a single space character, accessibility for individuals using screen readers, etc.) and do not follow this guideline. Whether you decide to follow this guideline or not, be consistent and follow the style already used in the project.

Indentation in Python 2 vs Python 3

Python 2 allowed code indented with a mixture of tabs and spaces. Python 3 disallows mixing the use of tabs and spaces for indentation. Whichever you choose, be consistent throughout the project.

PyCharm has built-in support for converting tab indentation to spaces “under the hood” for Python code in order to conform to PEP 8. So, you can type a tab character and PyCharm will automatically convert it to 4 spaces. You can control the amount of spaces that PyCharm uses to replace one tab character or you can decide to keep the tab character altogether and prevent automatic conversion. You can modify these settings in PyCharm’s Settings>Editor>Code Style>Python.

Python code indentation settings in PyCharm

You can also tell the editor to show non-printable characters if you are ever unsure what character exactly is being used by selecting Settings > Editor > General > Appearance then checking “Show whitespaces” option.

Python code whitespace settings in PyCharm

There are more complex rules on indenting single units of code that continue over several lines, e.g. function, list or dictionary definitions can all take more than one line. The preferred way of wrapping such long lines is by using Python’s implied line continuation inside delimiters such as parentheses (()), brackets ([]) and braces ({}), or a hanging indent.

# Add an extra level of indentation (extra 4 spaces) to distinguish arguments from the rest of the code that follows
def long_function_name(
        var_one, var_two, var_three,
        var_four):
    print(var_one)


# Aligned with opening delimiter
foo = long_function_name(var_one, var_two,
                         var_three, var_four)

# Use hanging indents to add an indentation level like paragraphs of text where all the lines in a paragraph are
# indented except the first one
foo = long_function_name(
    var_one, var_two,
    var_three, var_four)

# Using hanging indent again, but closing bracket aligned with the first non-blank character of the previous line
a_long_list = [
    [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[0.33, 0.66, 1], [0.66, 0.83, 1], [0.77, 0.88, 1]]
    ]

# Using hanging indent again, but closing bracket aligned with the start of the multiline contruct
a_long_list2 = [
    1,
    2,
    3,
    # ...
    79
]

More details on good and bad practices for continuation lines can be found in PEP 8 guideline on indentation.

Maximum Line Length

All lines should be up to 80 characters long; for lines containing comments or docstrings (to be covered later) the line length limit should be 73 - see this discussion for reasoning behind these numbers. Some teams strongly prefer a longer line length, and seemed to have settled on the length of 100. Long lines of code can be broken over multiple lines by wrapping expressions in delimiters, as mentioned above (preferred method), or using a backslash (\) at the end of the line to indicate line continuation (slightly less preferred method).

# Using delimiters ( ) to wrap a multi-line expression
if (a == True and
    b == False):

# Using a backslash (\) for line continuation
if a == True and \
    b == False:

Should a Line Break Before or After a Binary Operator?

Lines should break before binary operators so that the operators do not get scattered across different columns on the screen. In the example below, the eye does not have to do the extra work to tell which items are added and which are subtracted:

# PEP 8 compliant - easy to match operators with operands
income = (gross_wages
          + taxable_interest
          + (dividends - qualified_dividends)
          - ira_deduction
          - student_loan_interest)

Blank Lines

Top-level function and class definitions should be surrounded with two blank lines. Method definitions inside a class should be surrounded by a single blank line. You can use blank lines in functions, sparingly, to indicate logical sections.

Whitespace in Expressions and Statements

Avoid extraneous whitespace in the following situations:

String Quotes

In Python, single-quoted strings and double-quoted strings are the same. PEP 8 does not make a recommendation for this apart from picking one rule and consistently sticking to it. When a string contains single or double quote characters, use the other one to avoid backslashes in the string as it improves readability.

Naming Conventions

There are a lot of different naming styles in use, including:

As with other style guide recommendations - consistency is key. Follow the one already established in the project, if there is one. If there is not, follow any standard language style (such as PEP 8 for Python). Failing that, just pick one, document it and stick to it.

Some things to be wary of when naming things in the code:

Function, Variable, Class, Module, Package Naming in Python

  • Function and variable names should use lower_case_with_underscores
  • Avoid single character names in almost all instances.
  • Variable names should tell you what they store, and not just the type (e.g. name_of_patient is better than string)
  • Function names should tell you what the function does.
  • Class names should use the CapitalisedWords convention.
  • Modules should have short, all-lowercase names. Underscores can be used in the module name if it improves readability.
  • Packages should also have short, all-lowercase names, although the use of underscores is discouraged.

A more detailed guide on naming functions, modules, classes and variables is available from PEP 8.

Comments

Comments allow us to provide the reader with additional information on what the code does - reading and understanding source code is slow, laborious and can lead to misinterpretation, plus it is always a good idea to keep others in mind when writing code. A good rule of thumb is to assume that someone will always read your code at a later date, and this includes a future version of yourself. It can be easy to forget why you did something a particular way in six months’ time. Write comments as complete sentences and in English unless you are 100% sure the code will never be read by people who do not speak your language.

The Good, the Bad, and the Ugly Comments

As a side reading, check out the ‘Putting comments in code: the good, the bad, and the ugly’ blogpost. Remember - a comment should answer the ‘why’ question”. Occasionally the “what” question. The “how” question should be answered by the code itself.

Block comments generally apply to some (or all) code that follows them, and are indented to the same level as that code. Each line of a block comment starts with a # and a single space (unless it is indented text inside the comment).

def fahr_to_cels(fahr):
    # Block comment example: convert temperature in Fahrenheit to Celsius
    cels = (fahr + 32) * (5 / 9)
    return cels

An inline comment is a comment on the same line as a statement. Inline comments should be separated by at least two spaces from the statement. They should start with a # and a single space and should be used sparingly.

def fahr_to_cels(fahr):
    cels = (fahr + 32) * (5 / 9)  # Inline comment example: convert temperature in Fahrenheit to Celsius
    return cels

Python does not have any multi-line comments, like you may have seen in other languages like C++ or Java. However, there are ways to do it using docstrings as we will see in a moment.

The reader should be able to understand a single function or method from its code and its comments, and should not have to look elsewhere in the code for clarification. The kind of things that need to be commented are:

However, there are some restrictions. Comments that simply restate what the code does are redundant, and comments must be accurate and updated with the code, because an incorrect comment causes more confusion than no comment at all.

Exercise: Improve Code Style of Our Project

let us look at improving the coding style of our project. First, from the project root, use git switch to create a new feature branch called style-fixes from our develop branch. (Note that at this point develop and main branches are pointing at the same commit so it does not really matter which one we are branching off - in real collaborative software development environments, you’d likely be expected to branch off develop as it would contain the latest code developed by your team.)

$ git switch develop
$ git switch -c style-fixes

Next look at the inflammation-analysis.py file in PyCharm and identify where the above guidelines have not been followed. Fix the discovered inconsistencies and commit them to the feature branch.

Solution

Modify inflammation-analysis.py from PyCharm, which is helpfully marking inconsistencies with coding guidelines by underlying them. There are a few things to fix in inflammation-analysis.py, for example:

  1. Line 30 in inflammation-analysis.py is too long and not very readable. A better style would be to use multiple lines and hanging indent, with the closing brace `}’ aligned either with the first non-whitespace character of the last line of list or the first character of the line that starts the multiline construct or simply moved to the end of the previous line. All three acceptable modifications are shown below.

     # Using hanging indent, with the closing '}' aligned with the first non-blank character of the previous line
     view_data = {
         'average': models.daily_mean(inflammation_data),
         'max': models.daily_max(inflammation_data),
         'min': models.daily_min(inflammation_data)
         }
    
     # Using hanging indent with the, closing '}' aligned with the start of the multiline contruct
     view_data = {
         'average': models.daily_mean(inflammation_data),
         'max': models.daily_max(inflammation_data),
         'min': models.daily_min(inflammation_data)
     }
    
     # Using hanging indent where all the lines of the multiline contruct are indented except the first one
     view_data = {
         'average': models.daily_mean(inflammation_data),
         'max': models.daily_max(inflammation_data),
         'min': models.daily_min(inflammation_data)}
    
  2. Variable ‘InFiles’ in inflammation-analysis.py uses CapitalisedWords naming convention which is recommended for class names but not variable names. By convention, variable names should be in lowercase with optional underscores so you should rename the variable ‘InFiles’ to, e.g., ‘infiles’ or ‘in_files’.

  3. There are two blank lines starting from line 19 in inflammation-analysis.py. Normally, you should not use blank lines in the middle of the code unless you want to separate logical units - in which case only one blank line is used. Note how PyCharm is warning us by underlining the whole line below.

  4. Only one blank line after the end of definition of function main and the rest of the code below line 27 in inflammation-analysis.py - should be two blank lines (PEP 8 recommends surrounding top-level function (and class) definitions with two blank lines). Note how PyCharm is warning us by underlining the whole line below.

Finally, let us add and commit our changes to the feature branch. We will check the status of our working directory first.

$ git status
On branch style-fixes
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified:   inflammation-analysis.py

no changes added to commit (use "git add" and/or "git commit -a")

Git tells us we are on branch style-fixes and that we have unstaged and uncommited changes to inflammation-analysis.py. let us commit them to the local repository.

$ git add inflammation-analysis.py
$ git commit -m "Code style fixes."

Optional Exercise: Improve Code Style of Your Other Python Projects

If you have another Python project, check to which extent it conforms to PEP 8 coding style.

Documentation Strings aka Docstrings

If the first thing in a function is a string that is not assigned to a variable, that string is attached to the function as its documentation. Consider the following code implementing function for calculating the nth Fibonacci number:

def fibonacci(n):
    """Calculate the nth Fibonacci number.

    A recursive implementation of Fibonacci array elements.

    :param n: integer
    :raises ValueError: raised if n is less than zero
    :returns: Fibonacci number
    """
    if n < 0:
        raise ValueError('Fibonacci is not defined for N < 0')
    if n == 0:
        return 0
    if n == 1:
        return 1

    return fibonacci(n - 1) + fibonacci(n - 2)

Note here we are explicitly documenting our input variables, what is returned by the function, and also when the ValueError exception is raised. Along with a helpful description of what the function does, this information can act as a contract for readers to understand what to expect in terms of behaviour when using the function, as well as how to use it.

A special comment string like this is called a docstring. We do not need to use triple quotes when writing one, but if we do, we can break the text across multiple lines. Docstrings can also be used at the start of a Python module (a file containing a number of Python functions) or at the start of a Python class (containing a number of methods) to list their contents as a reference. You should not confuse docstrings with comments though - docstrings are context-dependent and should only be used in specific locations (e.g. at the top of a module and immediately after class and def keywords as mentioned). Using triple quoted strings in locations where they will not be interpreted as docstrings or using triple quotes as a way to ‘quickly’ comment out an entire block of code is considered bad practice.

In our example case, we used the Sphynx/ReadTheDocs docstring style formatting for the param, raises and returns - other docstring formats exist as well.

Python PEP 257 - Recommendations for Docstrings

PEP 257 is another one of Python Enhancement Proposals and this one deals with docstring conventions to standardise how they are used. For example, on the subject of module-level docstrings, PEP 257 says:

The docstring for a module should generally list
the classes,
exceptions
and functions
(and any other objects)
that are exported by the module, with a one-line summary of each.
(These summaries generally give less detail than the summary line in the object's docstring.)
The docstring for a package
(i.e., the docstring of the package's `__init__.py` module)
should also list the modules and subpackages exported by the package.

Note that __init__.py file used to be a required part of a package (pre Python 3.3) where a package was typically implemented as a directory containing an __init__.py file which got implicitly executed when a package was imported.

So, at the beginning of a module file we can just add a docstring explaining the nature of a module. For example, if fibonacci() was included in a module with other functions, our module could have at the start of it:

"""A module for generating numerical sequences of numbers that occur in nature.

Functions:
  fibonacci - returns the Fibonacci number for a given integer
  golden_ratio - returns the golden ratio number to a given Fibonacci iteration
  ...
"""
...

The docstring for a function or a module is returned when calling the help function and passing its name - for example from the interactive Python console/terminal available from the command line or when rendering code documentation online (e.g. see Python documentation). PyCharm also displays the docstring for a function/module in a little help popup window when using tab-completion.

help(fibonacci)

Exercise: Fix the Docstrings

Look into models.py in PyCharm and improve docstrings for functions daily_mean , daily_min, daily_max. Commit those changes to feature branch style-fixes.

Solution

For example, the improved docstrings for the above functions would contain explanations for parameters and return values.

def daily_mean(data):
   """Calculate the daily mean of a 2D inflammation data array for each day.

   :param data: A 2D data array with inflammation data (each row contains measurements for a single patient across all days).
   :returns: An array of mean values of measurements for each day.
   """
   return np.mean(data, axis=0)
def daily_max(data):
   """Calculate the daily maximum of a 2D inflammation data array for each day.

   :param data: A 2D data array with inflammation data (each row contains measurements for a single patient across all days).
   :returns: An array of max values of measurements for each day.
   """
   return np.max(data, axis=0)
def daily_min(data):
   """Calculate the daily minimum of a 2D inflammation data array for each day.

   :param data: A 2D data array with inflammation data (each row contains measurements for a single patient across all days).
   :returns: An array of minimum values of measurements for each day.
   """
   return np.min(data, axis=0)

Once we are happy with modifications, as usual before staging and commit our changes, we check the status of our working directory:

$ git status
On branch style-fixes
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified:   inflammation/models.py

no changes added to commit (use "git add" and/or "git commit -a")

As expected, Git tells us we are on branch style-fixes and that we have unstaged and uncommited changes to inflammation/models.py. Let us commit them to the local repository.

$ git add inflammation/models.py
$ git commit -m "Docstring improvements."

In the previous exercises, we made some code improvements on feature branch style-fixes. We have committed our changes locally but have not pushed this branch remotely for others to have a look at our code before we merge it onto the develop branch. Let us do that now, namely:

Here is a set commands that will achieve the above set of actions (remember to use git status often in between other Git commands to double check which branch you are on and its status):

$ git push -u origin style-fixes
$ git switch develop
$ git merge style-fixes
$ git push origin develop
$ git switch main
$ git merge develop
$ git push origin main

Typical Code Development Cycle

What you have done in the exercises in this episode mimics a typical software development workflow - you work locally on code on a feature branch, test it to make sure it works correctly and as expected, then record your changes using version control and share your work with others via a centrally backed-up repository. Other team members work on their feature branches in parallel and similarly share their work with colleagues for discussions. Different feature branches from around the team get merged onto the development branch, often in small and quick development cycles. After further testing and verifying that no code has been broken by the new features - the development branch gets merged onto the stable main branch, where new features finally resurface to end-users in bigger “software release” cycles.

Key Points

  • Always assume that someone else will read your code at a later date, including yourself.

  • Community coding conventions help you create more readable software projects that are easier to contribute to.

  • Python Enhancement Proposals (or PEPs) describe a recommended convention or specification for how to do something in Python.

  • Style checking to ensure code conforms to coding conventions is often part of IDEs.

  • Consistency with the style guide is important - whichever style you choose.


Verifying Code Style Using Linters

Overview

Teaching: 15 min
Exercises: 5 min
Questions
  • What tools can help with maintaining a consistent code style?

  • How can we automate code style checking?

Objectives
  • Use code linting tools to verify a program’s adherence to a Python coding style convention.

Verifying Code Style Using Linters

We have seen how we can use PyCharm to help us format our Python code in a consistent style. This aids reusability, since consistent-looking code is easier to modify since it is easier to read and understand. We can also use tools, called code linters, to identify consistency issues in a report-style. Linters analyse source code to identify and report on stylistic and even programming errors. Let us look at a very well used one of these called pylint.

First, let us ensure we are on the style-fixes branch once again.

$ git switch style-fixes

Pylint is just a Python package so we can install it in our virtual environment using:

$ python3 -m pip install pylint

We should also update our requirements.txt with this new addition:

$ python3 -m pip freeze > requirements.txt

Pylint is a command-line tool that can help our code in many ways:

Pylint can also identify code smells.

How Does Code Smell?

There are many ways that code can exhibit bad design whilst not breaking any rules and working correctly. A code smell is a characteristic that indicates that there is an underlying problem with source code, e.g. large classes or methods, methods with too many parameters, duplicated statements in both if and else blocks of conditionals, etc. They aren’t functional errors in the code, but rather are certain structures that violate principles of good design and impact design quality. They can also indicate that code is in need of maintenance and refactoring.

The phrase has its origins in Chapter 3 “Bad smells in code” by Kent Beck and Martin Fowler in Fowler, Martin (1999). Refactoring. Improving the Design of Existing Code. Addison-Wesley. ISBN 0-201-48567-2.

Pylint recommendations are given as warnings or errors, and Pylint also scores the code with an overall mark. We can look at a specific file (e.g. inflammation-analysis.py), or a package (e.g. inflammation). Let us look at our inflammation package and code inside it (namely models.py and views.py). From the project root do:

$ pylint inflammation

You should see an output similar to the following:

************* Module inflammation.models
inflammation/models.py:13:23: C0303: Trailing whitespace (trailing-whitespace)
inflammation/models.py:34:0: C0305: Trailing newlines (trailing-newlines)
************* Module inflammation.views
inflammation/views.py:4:0: W0611: Unused numpy imported as np (unused-import)

------------------------------------------------------------------
Your code has been rated at 8.50/10 (previous run: 8.50/10, +0.00)

Your own outputs of the above commands may vary depending on how you have implemented and fixed the code in previous exercises and the coding style you have used.

The five digit codes, such as C0303, are unique identifiers for warnings, with the first character indicating the type of warning. There are five different types of warnings that Pylint looks for, and you can get a summary of them by doing:

$ pylint --long-help

Near the end you’ll see:

  Output:
    Using the default text output, the message format is :
    MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE
    There are 5 kind of message types :
    * (C) convention, for programming standard violation
    * (R) refactor, for bad code smell
    * (W) warning, for python specific problems
    * (E) error, for probable bugs in the code
    * (F) fatal, if an error occurred which prevented pylint from doing
    further processing.

So for an example of a Pylint Python-specific warning, see the “W0611: Unused numpy imported as np (unused-import)” warning.

It is important to note that while tools such as Pylint are great at giving you a starting point to consider how to improve your code, they will not find everything that may be wrong with it.

How Does Pylint Calculate the Score?

The Python formula used is (with the variables representing numbers of each type of infraction and statement indicating the total number of statements):

10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)

For example, with a total of 31 statements of models.py and views.py, with a count of the errors shown above, we get a score of 8.00. Note whilst there is a maximum score of 10, given the formula, there is no minimum score - it is quite possible to get a negative score!

Exercise: Further Improve Code Style of Our Project

Select and fix a few of the issues with our code that Pylint detected. Make sure you do not break the rest of the code in the process and that the code still runs. After making any changes, run Pylint again to verify you have resolved these issues.

Make sure you commit and push requirements.txt and any file with further code style improvements you did on to style-fixes branch and then merge all these changes into your development branch.

For the time being, we will not merge the development branch onto main until we finish testing our code a bit further and automating those tests with GitHub’s Continuous Integration service called GitHub Actions (to be covered in the next section). Note that it is also possible to automate the linting kinds of code checks with GitHub Actions - we will come back to automated linting in the episode on “Diagnosing Issues and Improving Robustness”.

$ git add requirements.txt
$ git commit -m "Added Pylint library"
$ git push origin style-fixes
$ git switch develop
$ git merge style-fixes
$ git push origin develop

Optional Exercise: Improve Code Style of Your Other Python Projects

If you have a Python project you are working on or you worked on in the past, run it past Pylint to see what issues with your code are detected, if any.

Optional exercises

Checkout this optional exercise to learn more about pylint.

Key Points

  • Use linting tools on the command line (or via continuous integration) to automatically check your code style.


Optional Exercises for Section 1

Overview

Teaching: 0 min
Exercises: 45 min
Questions
  • How can I further finetune my coding environment?

Objectives
  • Explore different options for your coding environment.

This episode holds some optional exercises for section 1. The exercises have an explorative nature, so feel free to go off in any direction that interests you. You will be looking at some tools that either complement or are alternatives to those already introduced. Even if you find something that you really like, we still recommend sticking with the tools that were introduced prior to this episode when you move onto other sections of the course.

Exercise: Apply to your own project(s)

Apply what you learned in this section to your own project(s). This is the time to ask any questions to your instructors or helpers. Everyone has different preferences for tooling, so getting the input of experienced developers is a great opportunity.

Exercise: Try out different Integrated Development Environments

Install different Integrated Development Environments (IDEs) and test them out. Which one do you like the most and why?

You can try:

Technically, compared to PyCharm, the ‘IDEs’ listed above are source code editors capable of functioning as an IDE (with RStudio as an example). To function as an IDE, you have to manually install plugins for more powerful features such as support for a specific programming language or unit testing. What do you prefer, a lot of tooling out of the box or a lightweight editor with optional extensions?

If you want an even more lightweight setup you can try out these configurable source code editors:

Exercise: Customize the command line

You can customize the command line or use alternatives to bash to make yourself more productive.

  • Try out Bash Prompt Generator, it lets you try out different prompts, depending on the information you want displayed.
  • Try out z, a simple tool to more quickly move around directories.
  • Try out Z shell (zsh), a shell designed for interactive use.
  • Try out Oh My ZSH, which is a theming and package manager of the zsh terminal.
  • Try out fish, a smart and user-friendly command line shell.

Exercise: Try out different virtual environment managers

So far we used venv, but there are other virtual environment managers for Python:

Anaconda is widely used in academia, but the current license does not allow use for research in most circumstances. An open-source alternative is mini-forge.

Exercise: Customize pylint

You decide to change the max line length of your project to 100 instead of the default 80. Find out how you can configure pylint. You can first try to use the pylint command line interface, but also play with adding a configuration file that pylint reads in.

Solution

By passing an argument to pylint in the command line

Specify the max line length as an argument: pylint --max-line-length=100

Using a configuration file

You can create a file .pylintrc in the root of your project folder to overwrite pylint settings:

[FORMAT]
max-line-length=100

Key Points


Section 2: Ensuring Correctness of Software at Scale

Overview

Teaching: 5 min
Exercises: 0 min
Questions
  • What should we do to ensure our code is correct?

Objectives
  • Introduce the testing tools, techniques, and infrastructure that will be used in this section.

We have just set up a suitable environment for the development of our software project and are ready to start coding. However, we want to make sure that the new code we contribute to the project is actually correct and is not breaking any of the existing code. So, in this section, we will look at testing approaches that can help us ensure that the software we write is behaving as intended, and how we can diagnose and fix issues once faults are found. Using such approaches requires us to change our practice of development. This can take time, but potentially saves us considerable time in the medium to long term by allowing us to more comprehensively and rapidly find such faults, as well as giving us greater confidence in the correctness of our code - so we should try and employ such practices early on. We will also make use of techniques and infrastructure that allow us to do this in a scalable, automated and more performant way as our codebase grows.

Tools for scaled software testing

In this section we will:

Key Points

  • Using testing requires us to change our practice of code development, but saves time in the long run by allowing us to more comprehensively and rapidly find faults in code, as well as giving us greater confidence in the correctness of our code.

  • The use of test techniques and infrastructures such as parameterisation and Continuous Integration can help scale and further automate our testing process.


Automatically Testing Software

Overview

Teaching: 30 min
Exercises: 15 min
Questions
  • Does the code we develop work the way it should do?

  • Can we (and others) verify these assertions for themselves?

  • To what extent are we confident of the accuracy of results that are generated by code and appear in publications?

Objectives
  • Explain the reasons why testing is important

  • Describe the three main types of tests and what each are used for

  • Implement and run unit tests to verify the correct behaviour of program functions

Introduction

Being able to demonstrate that a process generates the right results is important in any field of research, whether it is software generating those results or not. So when writing software we need to ask ourselves some key questions:

If we are unable to demonstrate that our software fulfills these criteria, why would anyone use it? Having well-defined tests for our software is useful for this, but manually testing software can prove an expensive process.

Automation can help, and automation where possible is a good thing - it enables us to define a potentially complex process in a repeatable way that is far less prone to error than manual approaches. Once defined, automation can also save us a lot of effort, particularly in the long run. In this episode we will look into techniques of automated testing to improve the predictability of a software change, make development more productive, and help us produce code that works as expected and produces desired results.

What Is Software Testing?

For the sake of argument, if each line we write has a 99% chance of being right, then a 70-line program will be wrong more than half the time. We need to do better than that, which means we need to test our software to catch these mistakes.

We can and should extensively test our software manually, and manual testing is well-suited to testing aspects such as graphical user interfaces and reconciling visual outputs against inputs. However, even with a good test plan, manual testing is very time consuming and prone to error. Another style of testing is automated testing, where we write code that tests the functions of our software. Since computers are very good and efficient at automating repetitive tasks, we should take advantage of this wherever possible.

There are three main types of automated tests:

For the purposes of this course, we will focus on unit tests. But the principles and practices we wll talk about can be built on and applied to the other types of tests too.

Set Up a New Feature Branch for Writing Tests

We are going to look at how to run some existing tests and also write some new ones, so let us ensure we are initially on our develop branch. We will create a new feature branch called test-suite off the develop branch - a common term we use to refer to sets of tests - that we will use for our test writing work:

$ git switch develop
$ git switch -c test-suite

Good practice is to write our tests around the same time we write our code on a feature branch. But since the code already exists, we are creating a feature branch for just these extra tests. Git branches are designed to be lightweight, and where necessary, transient, and use of branches for even small bits of work is encouraged.

Later on, once we have finished writing these tests and are convinced they work properly, we will merge our test-suite branch back into develop. Once bigger code changes are completed, merged to develop from various feature branches and tested together with existing code - which of course may also have been changed by other developers in the meantime - we will merge all of the work into main.

Inflammation Data Analysis

Let us go back to our patient inflammation software project. Recall that it is based on a clinical trial of inflammation in patients who have been given a new treatment for arthritis. There are a number of datasets in the data directory recording inflammation information in patients (each file representing a different trial), and are each stored in comma-separated values (CSV) format: each row holds information for a single patient, and the columns represent successive days when inflammation was measured in patients.

Let us take a quick look at the data now from within the Python command line console. Change directory to the repository root (which should be in your home directory ~/python-intermediate-inflammation), ensure you have your virtual environment activated in your command line terminal (particularly if opening a new one), and then start the Python console by invoking the Python interpreter without any parameters, e.g.:

$ cd ~/python-intermediate-inflammation
$ source venv/bin/activate
$ python3

The last command will start the Python console within your shell, which enables us to execute Python commands interactively. Inside the console enter the following:

import numpy as np
data = np.loadtxt(fname='data/inflammation-01.csv', delimiter=',')
data.shape
(60, 40)

The data in this case is two-dimensional - it has 60 rows (one for each patient) and 40 columns (one for each day). Each cell in the data represents an inflammation reading on a given day for a patient.

Our patient inflammation application has a number of statistical functions held in inflammation/models.py: daily_mean(), daily_max() and daily_min(), for calculating the mean average, the maximum, and the minimum values for a given number of rows in our data. For example, the daily_mean() function looks like this:

def daily_mean(data):
    """Calculate the daily mean of a 2D inflammation data array for each day.

    :param data: A 2D data array with inflammation data (each row contains measurements for a single patient across all days).
    :returns: An array of mean values of measurements for each day.
    """
    return np.mean(data, axis=0)

Here, we use NumPy’s np.mean() function to calculate the mean vertically across the data (denoted by axis=0), which is then returned from the function. So, if data was a NumPy array of three rows like…

[[1, 2],
 [3, 4],
 [5, 6]]

…the function would return a 1D NumPy array of [3, 4] - each value representing the mean of each column (which are, coincidentally, the same values as the second row in the above data array).

To show this working with our patient data, we can use the function like this, passing the first four patient rows to the function in the Python console:

from inflammation.models import daily_mean

daily_mean(data[0:4])

Note we use a different form of import here - only importing the daily_mean function from our models instead of everything. This also has the effect that we can refer to the function using only its name, without needing to include the module name too (i.e. inflammation.models.daily_mean()).

The above code will return the mean inflammation for each day column across the first four patients (as a 1D NumPy array of shape (40, 0)):

array([ 0.  ,  0.5 ,  1.5 ,  1.75,  2.5 ,  1.75,  3.75,  3.  ,  5.25,
        6.25,  7.  ,  7.  ,  7.  ,  8.  ,  5.75,  7.75,  8.5 , 11.  ,
        9.75, 10.25, 15.  ,  8.75,  9.75, 10.  ,  8.  , 10.25,  8.  ,
        5.5 ,  8.  ,  6.  ,  5.  ,  4.75,  4.75,  4.  ,  3.25,  4.  ,
        1.75,  2.25,  0.75,  0.75])

The other statistical functions are similar. Note that in real situations functions we write are often likely to be more complicated than these, but simplicity here allows us to reason about what’s happening - and what we need to test - more easily.

Let us now look into how we can test each of our application’s statistical functions to ensure they are functioning correctly.

Writing Tests to Verify Correct Behaviour

One Way to Do It

One way to test our functions would be to write a series of checks or tests, each executing a function we want to test with known inputs against known valid results, and throw an error if we encounter a result that is incorrect. So, referring back to our simple daily_mean() example above, we could use [[1, 2], [3, 4], [5, 6]] as an input to that function and check whether the result equals [3, 4]:

import numpy.testing as npt

test_input = np.array([[1, 2], [3, 4], [5, 6]])
test_result = np.array([3, 4])
npt.assert_array_equal(daily_mean(test_input), test_result)

So we use the assert_array_equal() function - part of NumPy’s testing library - to test that our calculated result is the same as our expected result. This function explicitly checks the array’s shape and elements are the same, and throws an AssertionError if they are not. In particular, note that we cannot just use == or other Python equality methods, since these will not work properly with NumPy arrays in all cases.

We could then add to this with other tests that use and test against other values, and end up with something like:

test_input = np.array([[2, 0], [4, 0]])
test_result = np.array([2, 0])
npt.assert_array_equal(daily_mean(test_input), test_result)

test_input = np.array([[0, 0], [0, 0], [0, 0]])
test_result = np.array([0, 0])
npt.assert_array_equal(daily_mean(test_input), test_result)

test_input = np.array([[1, 2], [3, 4], [5, 6]])
test_result = np.array([3, 4])
npt.assert_array_equal(daily_mean(test_input), test_result)

However, if we were to enter these in this order, we will find we get the following after the first test:

...
AssertionError:
Arrays are not equal

Mismatched elements: 1 / 2 (50%)
Max absolute difference: 1.
Max relative difference: 0.5
 x: array([3., 0.])
 y: array([2, 0])

This tells us that one element between our generated and expected arrays does not match, and shows us the different arrays.

We could put these tests in a separate script to automate the running of these tests. But a Python script halts at the first failed assertion, so the second and third tests aren’t run at all. It would be more helpful if we could get data from all of our tests every time they are run, since the more information we have, the faster we are likely to be able to track down bugs. It would also be helpful to have some kind of summary report: if our set of tests - known as a test suite - includes thirty or forty tests (as it well might for a complex function or library that’s widely used), we would like to know how many passed or failed.

Going back to our failed first test, what was the issue? As it turns out, the test itself was incorrect, and should have read:

test_input = np.array([[2, 0], [4, 0]])
test_result = np.array([3, 0])
npt.assert_array_equal(daily_mean(test_input), test_result)

Which highlights an important point: as well as making sure our code is returning correct answers, we also need to ensure the tests themselves are also correct. Otherwise, we may go on to fix our code only to return an incorrect result that appears to be correct. So a good rule is to make tests simple enough to understand so we can reason about both the correctness of our tests as well as our code. Otherwise, our tests hold little value.

Using a Testing Framework

Keeping these things in mind, here’s a different approach that builds on the ideas we have seen so far but uses a unit testing framework. In such a framework we define our tests we want to run as functions, and the framework automatically runs each of these functions in turn, summarising the outputs. And unlike our previous approach, it will run every test regardless of any encountered test failures.

Most people do not enjoy writing tests, so if we want them to actually do it, it must be easy to:

Test results must also be reliable. If a testing tool says that code is working when it is not, or reports problems when there actually aren’t any, people will lose faith in it and stop using it.

Look at tests/test_models.py:

"""Tests for statistics functions within the Model layer."""

import numpy as np
import numpy.testing as npt

from inflammation.models import daily_mean

def test_daily_mean_zeros():
    """Test that mean function works for an array of zeros."""

    test_input = np.array([[0, 0],
                           [0, 0],
                           [0, 0]])
    test_result = np.array([0, 0])

    # Need to use NumPy testing functions to compare arrays
    npt.assert_array_equal(daily_mean(test_input), test_result)


def test_daily_mean_integers():
    """Test that mean function works for an array of positive integers."""

    test_input = np.array([[1, 2],
                           [3, 4],
                           [5, 6]])
    test_result = np.array([3, 4])

    # Need to use NumPy testing functions to compare arrays
    npt.assert_array_equal(daily_mean(test_input), test_result)
...

Here, although we have specified two of our previous manual tests as separate functions, they run the same assertions. Each of these test functions, in a general sense, are called test cases - these are a specification of:

Also, we are defining each of these things for a test case we can run independently that requires no manual intervention.

Going back to our list of requirements, how easy is it to run these tests? We can do this using a Python package called pytest. Pytest is a testing framework that allows you to write test cases using Python. You can use it to test things like Python functions, database operations, or even things like service APIs - essentially anything that has inputs and expected outputs. We will be using Pytest to write unit tests, but what you learn can scale to more complex functional testing for applications or libraries.

What About Unit Testing Frameworks in Python and Other Languages?

Other unit testing frameworks exist for Python, including Nose2 and Unittest, with Unittest supplied as part of the standard Python library. It is also worth noting that Pytest supports tests written for Unittest, a useful feature if you wish to prioritise use of the standard library initially, but retain the option to move Pytest in the future.

The unit testing approach can be translated to (and is supported within) other languages as well, e.g. pFUnit for Fortran, JUnit for Java (the original unit testing framework), Catch or gtest for C++, etc.

Why Use pytest over unittest?

We could alternatively use another Python unit test framework, unittest, which has the advantage of being installed by default as part of Python. This is certainly a solid and established option, however pytest has many distinct advantages, particularly for learning, including:

  • unittest requires additional knowledge of object-oriented frameworks (covered later in the course) to write unit tests, whereas in pytest these are written in simpler functions so is easier to learn
  • Being written using simpler functions, pytest’s scripts are more concise and contain less boilerplate, and thus are easier to read
  • pytest output, particularly in regard to test failure output, is generally considered more helpful and readable
  • pytest has a vast ecosystem of plugins available if ever you need additional testing functionality
  • unittest-style unit tests can be run from pytest out of the box!

A common challenge, particularly at the intermediate level, is the selection of a suitable tool from many alternatives for a given task. Once you have become accustomed to object-oriented programming you may find unittest a better fit for a particular project or team, so you may want to revisit it at a later date.

Installing Pytest

If you have already installed pytest package in your virtual environment, you can skip this step. Otherwise, as we have seen, we have a couple of options for installing external libraries:

  1. via PyCharm (see “Adding an External Library” section in “Integrated Software Development Environments” episode), or
  2. via the command line (see “Installing External Libraries in an Environment With pip section in “Virtual Environments For Software Development” episode).

To do it via the command line - exit the Python console first (either with Ctrl-D or by typing exit()), then do:

$ python3 -m pip install pytest

Whether we do this via PyCharm or the command line, the results are exactly the same: our virtual environment will now have the pytest package installed for use.

Running Tests

Now we can run these tests using pytest:

$ python3 -m pytest tests/test_models.py

Here, we use -m flag of the python3 command to invoke the pytest module, and specify the tests/test_models.py file to run the tests in that file explicitly.

Why Run Pytest Using python3 -m pytest and Not pytest?

pytest is another Python module that can be run via its own command but this is a good example why invoking Python modules via python3 -m may be better (recall the explanation of Python interpreter’s -m flag). Had we used pytest tests/test_models.py command directly, this would have led to a “ModuleNotFoundError: No module named ‘inflammation’” error. This is because pytest command (unlike python3 -m pytest) does not add the current directory to its list of directories to search for modules, hence the inflammation subdirectory’s contents are not being ‘seen’ by pytest causing the ModuleNotFoundError. There are ways to work around this problem but python3 -m pytest ensures it does not happen in the first place.

============================================== test session starts =================================
platform darwin -- Python 3.11.4, pytest-7.4.3, pluggy-1.3.0
rootdir: /Users/alex/work/SSI/training/lessons/python-intermediate-inflammation
plugins: anyio-4.0.0
collected 2 items                                                                                   

tests/test_models.py ..                                                                       [100%]

=============================================== 2 passed in 0.79s ==================================

Pytest looks for functions whose names also start with the letters ‘test_’ and runs each one. Notice the .. after our test script:

So if we have many tests, we essentially get a report indicating which tests succeeded or failed. Going back to our list of requirements (the bullet points under Using a Testing Framework section), do we think these results are easy to understand?

Exercise: Write Some Unit Tests

We already have a couple of test cases in test/test_models.py that test the daily_mean() function. Looking at inflammation/models.py, write at least two new test cases that test the daily_max() and daily_min() functions, adding them to test/test_models.py. Here are some hints:

  • You could choose to format your functions very similarly to daily_mean(), defining test input and expected result arrays followed by the equality assertion.
  • Try to choose cases that are suitably different, and remember that these functions take a 2D array and return a 1D array with each element the result of analysing each column of the data.

Once added, run all the tests again with python -m pytest tests/test_models.py, and you should also see your new tests pass.

Solution

from inflammation.models import daily_max, daily_mean, daily_min
...
def test_daily_max():
    """Test that max function works for an array of positive integers."""

    test_input = np.array([[4, 2, 5],
                           [1, 6, 2],
                           [4, 1, 9]])
    test_result = np.array([4, 6, 9])

    npt.assert_array_equal(daily_max(test_input), test_result)


def test_daily_min():
    """Test that min function works for an array of positive and negative integers."""

    test_input = np.array([[ 4, -2, 5],
                           [ 1, -6, 2],
                           [-4, -1, 9]])
    test_result = np.array([-4, -6, 2])

    npt.assert_array_equal(daily_min(test_input), test_result)
...

The big advantage is that as our code develops we can update our test cases and commit them back, ensuring that ourselves (and others) always have a set of tests to verify our code at each step of development. This way, when we implement a new feature, we can check a) that the feature works using a test we write for it, and b) that the development of the new feature does not break any existing functionality.

What About Testing for Errors?

There are some cases where seeing an error is actually the correct behaviour, and Python allows us to test for exceptions. Add this test in tests/test_models.py:

import pytest
from inflammation.models import daily_min
...
def test_daily_min_string():
    """Test for TypeError when passing strings"""

    with pytest.raises(TypeError):
        error_expected = daily_min([['Hello', 'there'], ['General', 'Kenobi']])

Note that you need to import the pytest library at the top of our test_models.py file with import pytest so that we can use pytest’s raises() function.

Run all your tests as before.

Since we have installed pytest to our environment, we should also regenerate our requirements.txt:

$ python3 -m pip freeze > requirements.txt

Finally, let us commit our new test_models.py file, requirements.txt file, and test cases to our test-suite branch, and push this new branch and all its commits to GitHub:

$ git add requirements.txt tests/test_models.py
$ git commit -m "Add initial test cases for daily_max() and daily_min()"
$ git push -u origin test-suite

Why Should We Test Invalid Input Data?

Testing the behaviour of inputs, both valid and invalid, is a really good idea and is known as data validation. Even if you are developing command line software that cannot be exploited by malicious data entry, testing behaviour against invalid inputs prevents generation of erroneous results that could lead to serious misinterpretation (as well as saving time and compute cycles which may be expensive for longer-running applications). It is generally best not to assume your user’s inputs will always be rational.

Key Points

  • The three main types of automated tests are unit tests, functional tests and regression tests.

  • We can write unit tests to verify that functions generate expected output given a set of specific inputs.

  • It should be easy to add or change tests, understand and run them, and understand their results.

  • We can use a unit testing framework like Pytest to structure and simplify the writing of tests in Python.

  • We should test for expected errors in our code.

  • Testing program behaviour against both valid and invalid inputs is important and is known as data validation.


Scaling Up Unit Testing

Overview

Teaching: 10 min
Exercises: 5 min
Questions
  • How can we make it easier to write lots of tests?

  • How can we know how much of our code is being tested?

Objectives
  • Use parameterisation to automatically run tests over a set of inputs

  • Use code coverage to understand how much of our code is being tested using unit tests

Introduction

We are starting to build up a number of tests that test the same function, but just with different parameters. However, continuing to write a new function for every single test case is not likely to scale well as our development progresses. How can we make our job of writing tests more efficient? And importantly, as the number of tests increases, how can we determine how much of our code base is actually being tested?

Parameterising Our Unit Tests

So far, we have been writing a single function for every new test we need. But when we simply want to use the same test code but with different data for another test, it would be great to be able to specify multiple sets of data to use with the same test code. Test parameterisation gives us this.

So instead of writing a separate function for each different test, we can parameterise the tests with multiple test inputs. For example, in tests/test_models.py let us rewrite the test_daily_mean_zeros() and test_daily_mean_integers() into a single test function:

from inflammation.models import daily_mean

@pytest.mark.parametrize(
    "test, expected",
    [
        ([ [0, 0], [0, 0], [0, 0] ], [0, 0]),
        ([ [1, 2], [3, 4], [5, 6] ], [3, 4]),
    ])
def test_daily_mean(test, expected):
    """Test mean function works for array of zeroes and positive integers."""
    npt.assert_array_equal(daily_mean(np.array(test)), np.array(expected))

Here, we use Pytest’s mark capability to add metadata to this specific test - in this case, marking that it is a parameterised test. parameterize() function is actually a Python decorator. A decorator, when applied to a function, adds some functionality to it when it is called, and here, what we want to do is specify multiple input and expected output test cases so the function is called over each of these inputs automatically when this test is called.

We specify these as arguments to the parameterize() decorator, firstly indicating the names of these arguments that will be passed to the function (test, expected), and secondly the actual arguments themselves that correspond to each of these names - the input data (the test argument), and the expected result (the expected argument). In this case, we are passing in two tests to test_daily_mean() which will be run sequentially.

So our first test will run daily_mean() on [ [0, 0], [0, 0], [0, 0] ] (our test argument), and check to see if it equals [0, 0] (our expected argument). Similarly, our second test will run daily_mean() with [ [1, 2], [3, 4], [5, 6] ] and check it produces [3, 4].

The big plus here is that we do not need to write separate functions for each of the tests - our test code can remain compact and readable as we write more tests and adding more tests scales better as our code becomes more complex.

Exercise: Write Parameterised Unit Tests

Rewrite your test functions for daily_max() and daily_min() to be parameterised, adding in new test cases for each of them.

Solution

from inflammation.models import daily_max, daily_min
...
@pytest.mark.parametrize(
    "test, expected",
    [
        ([ [0, 0, 0], [0, 0, 0], [0, 0, 0] ], [0, 0, 0]),
        ([ [4, 2, 5], [1, 6, 2], [4, 1, 9] ], [4, 6, 9]),
        ([ [4, -2, 5], [1, -6, 2], [-4, -1, 9] ], [4, -1, 9]),
    ])
def test_daily_max(test, expected):
    """Test max function works for zeroes, positive integers, mix of positive/negative integers."""
    npt.assert_array_equal(daily_max(np.array(test)), np.array(expected))


@pytest.mark.parametrize(
    "test, expected",
    [
        ([ [0, 0, 0], [0, 0, 0], [0, 0, 0] ], [0, 0, 0]),
        ([ [4, 2, 5], [1, 6, 2], [4, 1, 9] ], [1, 1, 2]),
        ([ [4, -2, 5], [1, -6, 2], [-4, -1, 9] ], [-4, -6, 2]),
    ])
def test_daily_min(test, expected):
    """Test min function works for zeroes, positive integers, mix of positive/negative integers."""
    npt.assert_array_equal(daily_min(np.array(test)), np.array(expected))
...

Try them out!

Let us commit our revised test_models.py file and test cases to our test-suite branch (but do not push them to the remote repository just yet!):

$ git add tests/test_models.py
$ git commit -m "Add parameterisation mean, min, max test cases"

Code Coverage - How Much of Our Code is Tested?

Pytest cannot think of test cases for us. We still have to decide what to test and how many tests to run. Our best guide here is economics: we want the tests that are most likely to give us useful information that we do not already have. For example, if daily_mean(np.array([[2, 0], [4, 0]]))) works, there is probably not much point testing daily_mean(np.array([[3, 0], [4, 0]]))), since it is hard to think of a bug that would show up in one case but not in the other.

Now, we should try to choose tests that are as different from each other as possible, so that we force the code we are testing to execute in all the different ways it can - to ensure our tests have a high degree of code coverage.

A simple way to check the code coverage for a set of tests is to install an additional package pytest-cov to our virtual environment, which is used by pytest to tell us how many statements in our code are being tested.

$ python3 -m pip install pytest-cov
$ python3 -m pytest --cov=inflammation.models tests/test_models.py

So here, we specify the additional named argument --cov to pytest specifying the code to analyse for test coverage.

============================= test session starts ==============================
platform darwin -- Python 3.11.4, pytest-7.4.3, pluggy-1.3.0
rootdir: /Users/alex/work/SSI/training/lessons/python-intermediate-inflammation
plugins: cov-4.1.0
collected 9 items                                                               

tests/test_models.py .........                                            [100%]

---------- coverage: platform darwin, python 3.11.4-final-0 ----------
Name                     Stmts   Miss  Cover
--------------------------------------------
inflammation/models.py       9      1    89%
--------------------------------------------
TOTAL                        9      1    89%

============================== 9 passed in 0.26s ===============================

Here we can see that our tests are doing very well - 89% of statements in inflammation/models.py have been executed. But which statements are not being tested? The additional argument --cov-report term-missing can tell us:

$ python3 -m pytest --cov=inflammation.models --cov-report term-missing tests/test_models.py
...
Name                     Stmts   Miss  Cover   Missing
------------------------------------------------------
inflammation/models.py       9      1    89%   18
------------------------------------------------------
TOTAL                        9      1    89%
...

So there is still one statement not being tested at line 18, and it turns out it is in the function load_csv(). Here we should consider whether or not to write a test for this function, and, in general, any other functions that may not be tested. Of course, if there are hundreds or thousands of lines that are not covered it may not be feasible to write tests for them all. But we should prioritise the ones for which we write tests, considering how often they are used, how complex they are, and importantly, the extent to which they affect our program’s results.

Again, we should also update our requirements.txt file with our latest package environment, which now also includes pytest-cov, and commit it:

$ python3 -m pip freeze > requirements.txt
$ cat requirements.txt

You’ll notice pytest-cov and coverage have been added. Let us commit this file and push our new branch to GitHub:

$ git add requirements.txt
$ git commit -m "Add coverage support"
$ git push origin test-suite

What about Testing Against Indeterminate Output?

What if your implementation depends on a degree of random behaviour? This can be desired within a number of applications, particularly in simulations (for example, molecular simulations) or other stochastic behavioural models of complex systems. So how can you test against such systems if the outputs are different when given the same inputs?

One way is to remove the randomness during testing. For those portions of your code that use a language feature or library to generate a random number, you can instead produce a known sequence of numbers instead when testing, to make the results deterministic and hence easier to test against. You could encapsulate this different behaviour in separate functions, methods, or classes and call the appropriate one depending on whether you are testing or not. This is essentially a type of mocking, where you are creating a “mock” version that mimics some behaviour for the purposes of testing.

Another way is to control the randomness during testing to provide results that are deterministic - the same each time. Implementations of randomness in computing languages, including Python, are actually never truly random - they are pseudorandom: the sequence of ‘random’ numbers are typically generated using a mathematical algorithm. A seed value is used to initialise an implementation’s random number generator, and from that point, the sequence of numbers is actually deterministic. Many implementations just use the system time as the default seed, but you can set your own. By doing so, the generated sequence of numbers is the same, e.g. using Python’s random library to randomly select a sample of ten numbers from a sequence between 0-99:

import random

random.seed(1)
print(random.sample(range(0, 100), 10))
random.seed(1)
print(random.sample(range(0, 100), 10))

Will produce:

[17, 72, 97, 8, 32, 15, 63, 57, 60, 83]
[17, 72, 97, 8, 32, 15, 63, 57, 60, 83]

So since your program’s randomness is essentially eliminated, your tests can be written to test against the known output. The trick of course, is to ensure that the output being testing against is definitively correct!

The other thing you can do while keeping the random behaviour, is to test the output data against expected constraints of that output. For example, if you know that all data should be within particular ranges, or within a particular statistical distribution type (e.g. normal distribution over time), you can test against that, conducting multiple test runs that take advantage of the randomness to fill the known “space” of expected results. Note that this is not as precise or complete, and bear in mind this could mean you need to run a lot of tests which may take considerable time.

Test Driven Development

In the previous episode we learnt how to create unit tests to make sure our code is behaving as we intended. Test Driven Development (TDD) is an extension of this. If we can define a set of tests for everything our code needs to do, then why not treat those tests as the specification.

When doing Test Driven Development, we write our tests first and only write enough code to make the tests pass. We tend to do this at the level of individual features - define the feature, write the tests, write the code. The main advantages are:

You may also see this process called Red, Green, Refactor: ‘Red’ for the failing tests, ‘Green’ for the code that makes them pass, then ‘Refactor’ (tidy up) the result.

For the challenges from here on, try to first convert the specification into a unit test, then try writing the code to pass the test.

Limits to Testing

Like any other piece of experimental apparatus, a complex program requires a much higher investment in testing than a simple one. Putting it another way, a small script that is only going to be used once, to produce one figure, probably does not need separate testing: its output is either correct or not. A linear algebra library that will be used by thousands of people in twice that number of applications over the course of a decade, on the other hand, definitely does. The key is identify and prioritise against what will most affect the code’s ability to generate accurate results.

it is also important to remember that unit testing cannot catch every bug in an application, no matter how many tests you write. To mitigate this manual testing is also important. Also remember to test using as much input data as you can, since very often code is developed and tested against the same small sets of data. Increasing the amount of data you test against - from numerous sources - gives you greater confidence that the results are correct.

Our software will inevitably increase in complexity as it develops. Using automated testing where appropriate can save us considerable time, especially in the long term, and allows others to verify against correct behaviour.

Optional exercises

Checkout these optional exercises to learn more about code coverage.

Key Points

  • We can assign multiple inputs to tests using parametrisation.

  • it is important to understand the coverage of our tests across our code.

  • Writing unit tests takes time, so apply them where it makes the most sense.


Continuous Integration for Automated Testing

Overview

Teaching: 45 min
Exercises: 0 min
Questions
  • How can I automate the testing of my repository’s code in a way that scales well?

  • What can I do to make testing across multiple platforms easier?

Objectives
  • Describe the benefits of using Continuous Integration for further automation of testing

  • Enable GitHub Actions Continuous Integration for public open source repositories

  • Use continuous integration to automatically run unit tests and code coverage when changes are committed to a version control repository

  • Use a build matrix to specify combinations of operating systems and Python versions to run tests over

Introduction

So far we have been manually running our tests as we require. Once we have made a change, or added a new feature with accompanying tests, we can re-run our tests, giving ourselves (and others who wish to run them) increased confidence that everything is working as expected. Now we are going to take further advantage of automation in a way that helps testing scale across a development team with very little overhead, using Continuous Integration.

What is Continuous Integration?

The automated testing we have done so far only takes into account the state of the repository we have on our own machines. In a software project involving multiple developers working and pushing changes on a repository, it would be great to know holistically how all these changes are affecting our codebase without everyone having to pull down all the changes and test them. If we also take into account the testing required on different target user platforms for our software and the changes being made to many repository branches, the effort required to conduct testing at this scale can quickly become intractable for a research project to sustain.

Continuous Integration (CI) aims to reduce this burden by further automation, and automation - wherever possible - helps us to reduce errors and makes predictable processes more efficient. The idea is that when a new change is committed to a repository, CI clones the repository, builds it if necessary, and runs any tests. Once complete, it presents a report to let you see what happened.

There are many CI infrastructures and services, free and paid for, and subject to change as they evolve their features. We will be looking at GitHub Actions - which unsurprisingly is available as part of GitHub.

Continuous Integration with GitHub Actions

A Quick Look at YAML

YAML is a text format used by GitHub Action workflow files. It is also increasingly used for configuration files and storing other types of data, so it is worth taking a bit of time looking into this file format.

YAML (a recursive acronym which stands for “YAML Ain’t Markup Language”) is a language designed to be human readable. A few basic things you need to know about YAML to get started with GitHub Actions are key-value pairs, arrays, maps and multi-line strings.

So firstly, YAML files are essentially made up of key-value pairs, in the form key: value, for example:

name: Kilimanjaro
height_metres: 5892
first_scaled_by: Hans Meyer

In general, you do not need quotes for strings, but you can use them when you want to explicitly distinguish between numbers and strings, e.g. height_metres: "5892" would be a string, but in the above example it is an integer. It turns out Hans Meyer is not the only first ascender of Kilimanjaro, so one way to add this person as another value to this key is by using YAML arrays, like this:

first_scaled_by:
- Hans Meyer
- Ludwig Purtscheller

An alternative to this format for arrays is the following, which would have the same meaning:

first_scaled_by: [Hans Meyer, Ludwig Purtscheller]

If we wanted to express more information for one of these values we could use a feature known as maps (dictionaries/hashes), which allow us to define nested, hierarchical data structures, e.g.

...
height:
  value: 5892
  unit: metres
  measured:
    year: 2008
    by: Kilimanjaro 2008 Precise Height Measurement Expedition
...

So here, height itself is made up of three keys value, unit, and measured, with the last of these being another nested key with the keys year and by. Note the convention of using two spaces for tabs, instead of Python’s four.

We can also combine maps and arrays to describe more complex data. Let us say we want to add more detail to our list of initial ascenders:

...
first_scaled_by:
- name: Hans Meyer
  date_of_birth: 22-03-1858
  nationality: German
- name: Ludwig Purtscheller
  date_of_birth: 22-03-1858
  nationality: Austrian

So here we have a YAML array of our two mountaineers, each with additional keys offering more information.

GitHub Actions also makes use of | symbol to indicate a multi-line string that preserves new lines. For example:

shakespeare_couplet: |
  Good night, good night. Parting is such sweet sorrow
  That I shall say good night till it be morrow.

They key shakespeare_couplet would hold the full two line string, preserving the new line after sorrow.

As we will see shortly, GitHub Actions workflows will use all of these.

Defining Our Workflow

With a GitHub repository there is a way we can set up CI to run our tests automatically when we commit changes. Let us do this now by adding a new file to our repository whilst on the test-suite branch. First, create the new directories .github/workflows:

$ mkdir -p .github/workflows

This directory is used specifically for GitHub Actions, allowing us to specify any number of workflows that can be run under a variety of conditions, which is also written using YAML. So let us add a new YAML file called main.yml (note its extension is .yml without the a) within the new .github/workflows directory:

name: CI

# We can specify which Github events will trigger a CI build
on: push

# now define a single job 'build' (but could define more)
jobs:

  build:

    # we can also specify the OS to run tests on
    runs-on: ubuntu-latest

    # a job is a seq of steps
    steps:

    # Next we need to checkout out repository, and set up Python
    # A 'name' is just an optional label shown in the log - helpful to clarify progress - and can be anything
    - name: Checkout repository
      uses: actions/checkout@v4

    - name: Set up Python 3.11
      uses: actions/setup-python@v5
      with:
        python-version: "3.11"

    - name: Install Python dependencies
      run: |
        python3 -m pip install --upgrade pip
        python3 -m pip install -r requirements.txt

    - name: Test with PyTest
      run: |
        python3 -m pytest --cov=inflammation.models tests/test_models.py

Note: be sure to create this file as main.yml within the newly created .github/workflows directory, or it will not work!

So as well as giving our workflow a name - CI - we indicate with on that we want this workflow to run when we push commits to our repository. The workflow itself is made of a single job named build, and we could define any number of jobs after this one if we wanted, and each one would run in parallel.

Next, we define what our build job will do. With runs-on we first state which operating systems we want to use, in this case just Ubuntu for now. We will be looking at ways we can scale this up to testing on more systems later.

Lastly, we define the steps that our job will undertake in turn, to set up the job’s environment and run our tests. You can think of the job’s environment initially as a blank slate: much like a freshly installed machine (albeit virtual) with very little installed on it, we need to prepare it with what it needs to be able to run our tests. Each of these steps are:

What about other Actions?

Our workflow here uses standard GitHub Actions (indicated by actions/*). Beyond the standard set of actions, others are available via the GitHub Marketplace. It contains many third-party actions (as well as apps) that you can use with GitHub for many tasks across many programming languages, particularly for setting up environments for running tests, code analysis and other tools, setting up and using infrastructure (for things like Docker or Amazon’s AWS cloud), or even managing repository issues. You can even contribute your own.

Triggering a Build on GitHub Actions

Now if we commit and push this change a CI run will be triggered:

$ git add .github
$ git commit -m "Add GitHub Actions configuration"
$ git push origin test-suite

Since we are only committing the GitHub Actions configuration file to the test-suite branch for the moment, only the contents of this branch will be used for CI. We can pass this file upstream into other branches (i.e. via merges) when we are happy it works, which will then allow the process to run automatically on these other branches. This again highlights the usefulness of the feature-branch model - we can work in isolation on a feature until it is ready to be passed upstream without disrupting development on other branches, and in the case of CI, we are starting to see its scaling benefits across a larger scale development team working across potentially many branches.

Checking Build Progress and Reports

Handily, we can see the progress of the build from our repository on GitHub by selecting the test-suite branch from the dropdown menu (which currently says main), and then selecting commits (located just above the code directory listing on the right, alongside the last commit message and a small image of a timer).

Continuous Integration with GitHub Actions - Initial Build

You’ll see a list of commits for this branch, and likely see an orange marker next to the latest commit (clicking on it yields Some checks haven’t completed yet) meaning the build is still in progress. This is a useful view, as over time, it will give you a history of commits, who did them, and whether the commit resulted in a successful build or not.

Hopefully after a while, the marker will turn into a green tick indicating a successful build. Clicking it gives you even more information about the build, and selecting Details link takes you to a complete log of the build and its output.

Continuous Integration with GitHub Actions - Build Log

The logs are actually truncated; selecting the arrows next to the entries - which are the name labels we specified in the main.yml file - will expand them with more detail, including the output from the actions performed.

Continuous Integration with GitHub Actions - Build Details

GitHub Actions offers these continuous integration features as a completely free service for public repositories, and supplies 2000 build minutes a month on as many private repositories that you like. Paid levels are available too.

Scaling Up Testing Using Build Matrices

Now we have our CI configured and building, we can use a feature called build matrices which really shows the value of using CI to test at scale.

Suppose the intended users of our software use either Ubuntu, Mac OS, or Windows, and either have Python version 3.10 or 3.11 installed, and we want to support all of these. Assuming we have a suitable test suite, it would take a considerable amount of time to set up testing platforms to run our tests across all these platform combinations. Fortunately, CI can do the hard work for us very easily.

Using a build matrix we can specify testing environments and parameters (such as operating system, Python version, etc.) and new jobs will be created that run our tests for each permutation of these.

Let us see how this is done using GitHub Actions. To support this, we define a strategy as a matrix of operating systems and Python versions within build. We then use matrix.os and matrix.python-version to reference these configuration possibilities instead of using hardcoded values - replacing the runs-on and python-version parameters to refer to the values from the matrix. So, our .github/workflows/main.yml should look like the following:

# Same key-value pairs as in "Defining Our Workflow" section
name: CI
on: push
jobs:
  build:

    # Here we add the matrices definition:
    strategy:
      matrix:
        os: ["ubuntu-latest", "macos-latest", "windows-latest"]
        python-version: ["3.10", "3.11"]

    # Here we add the reference to the os matrix values
    runs-on: ${{ matrix.os }}

    # Same key-value pairs as in "Defining Our Workflow" section
    steps:

    - name: Checkout repository
      uses: actions/checkout@v4

    - name: Set up Python
      uses: actions/setup-python@v5
      with:
        # Here we add the reference to the python-version matrix values
        python-version: ${{ matrix.python-version }}
    # Same steps as in "Defining Our Workflow" section
    - name: Install Python dependencies
      run: |
        python3 -m pip install --upgrade pip
        python3 -m pip install -r requirements.txt
    - name: Test with PyTest
      run: |
        python3 -m pytest --cov=catchment.models tests/test_models.py

The ${{ }} are used as a means to reference configuration values from the matrix. This way, every possible permutation of Python versions 3.10 and 3.11 with the latest versions of Ubuntu, Mac OS and Windows operating systems will be tested and we can expect 6 build jobs in total.

Let us commit and push this change and see what happens:

$ git add .github/workflows/main.yml
$ git commit -m "Add GA build matrix for os and Python version"
$ git push origin test-suite

If we go to our GitHub build now, we can see that a new job has been created for each permutation.

Continuous Integration with GitHub Actions - Build Matrix

Note all jobs running in parallel (up to the limit allowed by our account) which potentially saves us a lot of time waiting for testing results. Overall, this approach allows us to massively scale our automated testing across platforms we wish to test.

Failed CI Builds

A CI build can fail when, e.g. a used Python package no longer supports a particular version of Python indicated in a GitHub Actions CI build matrix. In this case, the solution is either to upgrade the Python version in the build matrix (when possible) or downgrade the package version (and not use the latest one like we have been doing in this course).

Also note that, if one job fails in the build for any reason - all subsequent jobs will get cancelled because of the default behavior of GitHub Actions. From GitHub’s documentation:

“GitHub will cancel all in-progress and queued jobs in the matrix if any job in the matrix fails.”

This behaviour can be controlled by changing the value of the fail-fast property:

...
   strategy:
     fail-fast: false
     matrix:
...

Key Points

  • Continuous Integration can run tests automatically to verify changes as code develops in our repository.

  • CI builds are typically triggered by commits pushed to a repository.

  • We need to write a configuration file to inform a CI service what to do for a build.

  • We can specify a build matrix to specify multiple platforms and programming language versions to test against

  • Builds can be enabled and configured separately for each branch.

  • We can run - and get reports from - different CI infrastructure builds simultaneously.


Diagnosing Issues and Improving Robustness

Overview

Teaching: 30 min
Exercises: 15 min
Questions
  • Once we know our program has errors, how can we locate them in the code?

  • How can we make our programs more resilient to failure?

Objectives
  • Use a debugger to explore behaviour of a running program

  • Describe and identify edge and corner test cases and explain why they are important

  • Apply error handling and defensive programming techniques to improve robustness of a program

  • Integrate linting tool style checking into a continuous integration job

Introduction

Unit testing can tell us something is wrong in our code and give a rough idea of where the error is by which test(s) are failing. But it does not tell us exactly where the problem is (i.e. what line of code), or how it came about. To give us a better idea of what is going on, we can:

But such approaches are often time consuming and sometimes not enough to fully pinpoint the issue. In complex programs, like simulation codes, we often need to get inside the code while it is running and explore. This is where using a debugger can be useful.

Setting the Scene

Let us add a new function called patient_normalise() to our inflammation example to normalise a given inflammation data array so that all entries fall between 0 and 1. (Make sure you create a new feature branch for this work off your develop branch.) To normalise each patient’s inflammation data we need to divide it by the maximum inflammation experienced by that patient. To do so, we can add the following code to inflammation/models.py:

def patient_normalise(data):
    """Normalise patient data from a 2D inflammation data array."""
    max = np.max(data, axis=0)
    return data / max[:, np.newaxis]

Note: there are intentional mistakes in the above code, which will be detected by further testing and code style checking below so bear with us for the moment.

In the code above, we first go row by row and find the maximum inflammation value for each patient and store these values in a 1-dimensional NumPy array max. We then want to use NumPy’s element-wise division, to divide each value in every row of inflammation data (belonging to the same patient) by the maximum value for that patient stored in the 1D array max. However, we cannot do that division automatically as data is a 2D array (of shape (60, 40)) and max is a 1D array (of shape (60, )), which means that their shapes are not compatible.

NumPy arrays of incompatible shapes

Hence, to make sure that we can perform this division and get the expected result, we need to convert max to be a 2D array by using the newaxis index operator to insert a new axis into max, making it a 2D array of shape (60, 1).

NumPy arrays' shapes after adding a new_axis

Now the division will give us the expected result. Even though the shapes are not identical, NumPy’s automatic broadcasting (adjustment of shapes) will make sure that the shape of the 2D max array is now “stretched” (“broadcast”) to match that of data - i.e. (60, 40), and element-wise division can be performed.

NumPy arrays' shapes after broadcasting

Broadcasting

The term broadcasting describes how NumPy treats arrays with different shapes during arithmetic operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes. Be careful, though, to understand how the arrays get stretched to avoid getting unexpected results.

Note there is an assumption in this calculation that the minimum value we want is always zero. This is a sensible assumption for this particular application, since the zero value is a special case indicating that a patient experienced no inflammation on a particular day.

Let us now add a new test in tests/test_models.py to check that the normalisation function is correct for some test data.

from inflammation.models import patient_normalise

@pytest.mark.parametrize(
    "test, expected",
    [
        ([[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[0.33, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]])
    ])
def test_patient_normalise(test, expected):
    """Test normalisation works for arrays of one and positive integers.
       Test with a relative and absolute tolerance of 0.01."""

    result = patient_normalise(np.array(test))
    npt.assert_allclose(result, np.array(expected), rtol=1e-2, atol=1e-2)

Note that we are using the assert_allclose() Numpy testing function instead of assert_array_equal(), since it allows us to test against values that are close to each other. This is very useful when we have numbers with arbitrary decimal places and are only concerned with a certain degree of precision, like the test case above.

Relative and absolute tolerance

Relative tolerance in unit testing means that the acceptable difference between the expected and actual results depends on the size of the expected result itself. So, if your expected result is 100, a relative tolerance of 0.1 (or 10%) means the actual result can be anywhere from 90 to 110 and still be considered correct.

Absolute tolerance, on the other hand, sets a fixed allowable difference regardless of the magnitude of the expected result. For example, if you set an absolute tolerance of 5, it means the actual result can be within 5 units of the expected result, regardless of whether the expected result is 10 or 1000.

Run the tests again using python -m pytest tests/test_models.py and you will note that the new test is failing, with an error message that does not give many clues as to what went wrong.

E           AssertionError:
E           Not equal to tolerance rtol=0.01, atol=0.01
E
E           Mismatched elements: 6 / 9 (66.7%)
E           Max absolute difference: 0.57142857
E           Max relative difference: 0.57356077
E            x: array([[0.142857, 0.285714, 0.428571],
E                  [0.5     , 0.625   , 0.75    ],
E                  [0.777778, 0.888889, 1.      ]])
E            y: array([[0.33, 0.67, 1.  ],
E                  [0.67, 0.83, 1.  ],
E                  [0.78, 0.89, 1.  ]])

tests/test_models.py:53: AssertionError

Let us use a debugger at this point to see what is going on and why the function failed.

Debugging in PyCharm

Think of debugging like performing exploratory surgery - on code! Debuggers allow us to peer at the internal workings of a program, such as variables and other state, as it performs its functions.

Running Tests Within PyCharm

Firstly, to make it easier to track what’s going on, we can set up PyCharm to run and debug our tests instead of running them from the command line. If you have not done so already, you will first need to enable the Pytest framework in PyCharm. You can do this by:

  1. Select either PyCharm > Preferences (Mac) or File > Settings (Linux, Windows).
  2. Then, in the preferences window that appears, select Tools -> Python integrated tools > from the left.
  3. Under Testing, for Default test runner select pytest.
  4. Select OK.

Setting up test framework in PyCharm

We can now run pytest over our tests in PyCharm, similarly to how we ran our inflammation-analysis.py script before. Right-click the test_models.py file under the tests directory in the file navigation window on the left, and select Run 'pytest in test_model...'. You’ll see the results of the tests appear in PyCharm in a bottom panel. If you scroll down in that panel you should see the failed test_patient_normalise() test result looking something like the following:

Running pytest in PyCharm

We can also run our test functions individually. First, let us check that our PyCharm running and testing configurations are correct. Select Run > Edit Configurations... from the PyCharm menu, and you should see something like the following:

Ensuring testing configurations in PyCharm are correct

PyCharm allows us to configure multiple ways of running our code. Looking at the figure above, the first of these - inflammation-analysis under Python - was configured when we set up how to run our script from within PyCharm. The second - pytest in test_models.py under Python tests - is our recent test configuration. If you see just these, you are good to go. We do not need any others, so select any others you see and click the - button at the top to remove them. This will avoid any confusion when running our tests separately. Click OK when done.

Buffered Output

Whenever a Python program prints text to the terminal or to a file, it first stores this text in an output buffer. When the buffer becomes full or is flushed, the contents of the buffer are written to the terminal / file in one go and the buffer is cleared. This is usually done to increase performance by effectively converting multiple output operations into just one. Printing text to the terminal is a relatively slow operation, so in some cases this can make quite a big difference to the total execution time of a program.

However, using buffered output can make debugging more difficult, as we can no longer be quite sure when a log message will be displayed. In order to make debugging simpler, PyCharm automatically adds the environment variable PYTHONUNBUFFERED we see in the screenshot above, which disables output buffering.

Now, if you select the green arrow next to a test function in our test_models.py script in PyCharm, and select Run 'pytest in test_model...', we can run just that test:

Running a single test in PyCharm

Click on the “run” button next to test_patient_normalise, and you will be able to see that PyCharm runs just that test function, and we see the same AssertionError that we saw before.

Running the Debugger

Now we want to use the debugger to investigate what is happening inside the patient_normalise function. To do this we will add a breakpoint in the code. A breakpoint will pause execution at that point allowing us to explore the state of the program.

To set a breakpoint, navigate to the models.py file and move your mouse to the return statement of the patient_normalise function. Click to just to the right of the line number for that line and a small red dot will appear, indicating that you have placed a breakpoint on that line.

Setting a breakpoint in PyCharm

Now if you select the green arrow next to the test_patient_normalise function and instead select Debug 'pytest in test_model...', you will notice that execution will be paused at the return statement of patient_normalise. In the debug panel that appears below, we can now investigate the exact state of the program prior to it executing this line of code.

In the debug panel below, in the Debugger tab you will be able to see two sections that looks something like the following:

Debugging in PyCharm

We also have the ability run any Python code we wish at this point to explore the state of the program even further! This is useful if you want to view a particular combination of variables, or perhaps a single element or slice of an array to see what went wrong. Select the Console tab in the panel (next to the Debugger tab), and you’ll be presented with a Python prompt. Try putting in the expression max[:, np.newaxis] into the console, and you will be able to see the column vector that we are dividing data by in the return line of the function.

Debugging in PyCharm

Now, looking at the max variable, we can see that something looks wrong, as the maximum values for each patient do not correspond to the data array. Recall that the input data array we are using for the function is

  [[1, 2, 3],
   [4, 5, 6],
   [7, 8, 9]]

So the maximum inflammation for each patient should be [3, 6, 9], whereas the debugger shows [7, 8, 9]. You can see that the latter corresponds exactly to the last column of data, and we can immediately conclude that we took the maximum along the wrong axis of data. Now we have our answer, stop the debugging process by selecting the red square at the top right of the main PyCharm window.

So to fix the patient_normalise function in models.py, change axis=0 in the first line of the function to axis=1. With this fix in place, running all the tests again should result in all tests passing. Navigate back to test_models.py in PyCharm, right click test_models.py and select Run 'pytest in test_model...'. You should be rewarded with:

All tests in PyCharm are successful

NumPy Axis

Getting the axes right in NumPy is not trivial - the following tutorial offers a good explanation on how axes work when applying NumPy functions to arrays.

Debugging Outside of an IDE

It is worth being aware of the fact that you do not need to use an IDE to debug code, although it does certainly make it easier! The Python standard library comes with a command-line capable debugger built in, called pdb. The easiest way to use it is to put one of these lines anywhere in your code you would like the debugger to stop: import pdb; pdb.set_trace() or breakpoint(). Then you are able to run your Python program from the command line like you normally would, but instead of completing or erroring out, a different prompt for the debugger will come up in your terminal. The debugger has its own commands that you can read about here.

Corner or Edge Cases

The test case that we have currently written for patient_normalise is parameterised with a fairly standard data array. However, when writing your test cases, it is important to consider parameterising them by unusual or extreme values, in order to test all the edge or corner cases that your code could be exposed to in practice. Generally speaking, it is at these extreme cases that you will find your code failing, so it is beneficial to test them beforehand.

What is considered an “edge case” for a given component depends on what that component is meant to do. In the case of patient_normalise function, the goal is to normalise a numeric array of numbers. For numerical values, extreme cases could be zeros, very large or small values, not-a-number (NaN) or infinity values. Since we are specifically considering an array of values, an edge case could be that all the numbers of the array are equal.

For all the given edge cases you might come up with, you should also consider their likelihood of occurrence. It is often too much effort to exhaustively test a given function against every possible input, so you should prioritise edge cases that are likely to occur. For our patient_normalise function, some common edge cases might be the occurrence of zeros, and the case where all the values of the array are the same.

When you are considering edge cases to test for, try also to think about what might break your code. For patient_normalise we can see that there is a division by the maximum inflammation value for each patient, so this will clearly break if we are dividing by zero here, resulting in NaN values in the normalised array.

With all this in mind, let us add a few edge cases to our parametrisation of test_patient_normalise. We will add two extra tests, corresponding to an input array of all 0, and an input array of all 1.

@pytest.mark.parametrize(
    "test, expected",
    [
        ([[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]),
        ([[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1]]),
        ([[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[0.33, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]]),
    ])

Running the tests now from the command line results in the following assertion error, due to the division by zero as we predicted.

E           AssertionError:
E           Not equal to tolerance rtol=0.01, atol=0.01
E
E           x and y nan location mismatch:
E            x: array([[nan, nan, nan],
E                  [nan, nan, nan],
E                  [nan, nan, nan]])
E            y: array([[0, 0, 0],
E                  [0, 0, 0],
E                  [0, 0, 0]])

tests/test_models.py:88: AssertionError

How can we fix this? Luckily, there is a NumPy function that is useful here, np.isnan(), which we can use to replace all the NaN’s with our desired result, which is 0. We can also silence the run-time warning using np.errstate:

...
def patient_normalise(data):
    """
    Normalise patient data from a 2D inflammation data array.

    NaN values are ignored, and normalised to 0.

    Negative values are rounded to 0.
    """
    max = np.nanmax(data, axis=1)
    with np.errstate(invalid='ignore', divide='ignore'):
        normalised = data / max[:, np.newaxis]
    normalised[np.isnan(normalised)] = 0
    normalised[normalised < 0] = 0
    return normalised
...

Exercise: Exploring Tests for Edge Cases

Think of some more suitable edge cases to test our patient_normalise() function and add them to the parametrised tests. After you have finished remember to commit your changes.

Possible Solution

from inflammation.models import patient_normalise

@pytest.mark.parametrize(
    "test, expected",
    [
        (
            [[0, 0, 0], [0, 0, 0], [0, 0, 0]],
            [[0, 0, 0], [0, 0, 0], [0, 0, 0]],
        ),
        (
            [[1, 1, 1], [1, 1, 1], [1, 1, 1]],
            [[1, 1, 1], [1, 1, 1], [1, 1, 1]],
        ),
        (
            [[float('nan'), 1, 1], [1, 1, 1], [1, 1, 1]],
            [[0, 1, 1], [1, 1, 1], [1, 1, 1]],
        ),
        (
            [[1, 2, 3], [4, 5, float('nan')], [7, 8, 9]],
            [[0.33, 0.67, 1], [0.8, 1, 0], [0.78, 0.89, 1]],
        ),
        (
            [[-1, 2, 3], [4, 5, 6], [7, 8, 9]],
            [[0, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]],
        ),
        (
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
            [[0.33, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]],
        )
    ])
def test_patient_normalise(test, expected):
    """Test normalisation works for arrays of one and positive integers."""

    result = patient_normalise(np.array(test))
    npt.assert_allclose(result, np.array(expected), rtol=1e-2, atol=1e-2)
...

You could also, for example, test and handle the case of a whole row of NaNs.

Defensive Programming

In the previous section, we made a few design choices for our patient_normalise function:

  1. We are implicitly converting any NaN and negative values to 0,
  2. Normalising a constant 0 array of inflammation results in an identical array of 0s,
  3. We do not warn the user of any of these situations.

This could have be handled differently. We might decide that we do not want to silently make these changes to the data, but instead to explicitly check that the input data satisfies a given set of assumptions (e.g. no negative values) and raise an error if this is not the case. Then we can proceed with the normalisation, confident that our normalisation function will work correctly.

Checking that input to a function is valid via a set of preconditions is one of the simplest forms of defensive programming which is used as a way of avoiding potential errors. Preconditions are checked at the beginning of the function to make sure that all assumptions are satisfied. These assumptions are often based on the value of the arguments, like we have already discussed. However, in a dynamic language like Python one of the more common preconditions is to check that the arguments of a function are of the correct type. Currently there is nothing stopping someone from calling patient_normalise with a string, a dictionary, or another object that is not an ndarray.

As an example, let us change the behaviour of the patient_normalise() function to raise an error on negative inflammation values. Edit the inflammation/models.py file, and add a precondition check to the beginning of the patient_normalise() function like so:

...
    if np.any(data < 0):
        raise ValueError('Inflammation values should not be negative')
...

We can then modify our test function in tests/test_models.py to check that the function raises the correct exception - a ValueError - when input to the test contains negative values (i.e. input case [[-1, 2, 3], [4, 5, 6], [7, 8, 9]]). The ValueError exception is part of the standard Python library and is used to indicate that the function received an argument of the right type, but of an inappropriate value.

from inflammation.models import patient_normalise

@pytest.mark.parametrize(
    "test, expected, expect_raises",
    [
        ... # previous test cases here, with None for expect_raises, except for the next one - add ValueError
        ... # as an expected exception (since it has a negative input value)
        (
            [[-1, 2, 3], [4, 5, 6], [7, 8, 9]],
            [[0, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]],
            ValueError,
        ),
        (
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
            [[0.33, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]],
            None,
        ),
    ])
def test_patient_normalise(test, expected, expect_raises):
    """Test normalisation works for arrays of one and positive integers."""
        
    if expect_raises is not None:
        with pytest.raises(expect_raises):
            result = patient_normalise(np.array(test))
            npt.assert_allclose(result, np.array(expected), rtol=1e-2, atol=1e-2)
    else:
        result = patient_normalise(np.array(test))
        npt.assert_allclose(result, np.array(expected), rtol=1e-2, atol=1e-2)

Be sure to commit your changes so far and push them to GitHub.

Optional Exercise: Add a Precondition to Check the Correct Type and Shape of Data

Add preconditions to check that data is an ndarray object and that it is of the correct shape. Add corresponding tests to check that the function raises the correct exception. You will find the Python function isinstance useful here, as well as the Python exception TypeError. Once you are done, commit your new files, and push the new commits to your remote repository on GitHub.

Solution

In inflammation/models.py:

...
def patient_normalise(data):
    """
    Normalise patient data between 0 and 1 of a 2D inflammation data array.

    Any NaN values are ignored, and normalised to 0

    :param data: 2D array of inflammation data
    :type data: ndarray

    """
    if not isinstance(data, np.ndarray):
        raise TypeError('data input should be ndarray')
    if len(data.shape) != 2:
        raise ValueError('inflammation array should be 2-dimensional')
    if np.any(data < 0):
        raise ValueError('inflammation values should be non-negative')
    max = np.nanmax(data, axis=1)
    with np.errstate(invalid='ignore', divide='ignore'):
        normalised = data / max[:, np.newaxis]
    normalised[np.isnan(normalised)] = 0
    return normalised
...

In test/test_models.py:

from inflammation.models import patient_normalise
...
@pytest.mark.parametrize(
    "test, expected, expect_raises",
    [
        ...
        (
            'hello',
            None,
            TypeError,
        ),
        (
            3,
            None,
            TypeError,
        ),
        (
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
            [[0.33, 0.67, 1], [0.67, 0.83, 1], [0.78, 0.89, 1]],
            None,
        )
    ])
def test_patient_normalise(test, expected, expect_raises):
    """Test normalisation works for arrays of one and positive integers."""
    if isinstance(test, list):
        test = np.array(test)
    if expect_raises is not None:
        with pytest.raises(expect_raises):
          result = patient_normalise(test)
          npt.assert_allclose(result, np.array(expected), rtol=1e-2, atol=1e-2)

    else:
        result = patient_normalise(test)
        npt.assert_allclose(result, np.array(expected), rtol=1e-2, atol=1e-2)
...

Note the conversion from list to np.array has been moved out of the call to npt.assert_allclose() within the test function, and is now only applied to list items (rather than all items). This allows for greater flexibility with our test inputs, since this wouldn’t work in the test case that uses a string.

If you do the challenge, again, be sure to commit your changes and push them to GitHub.

You should not take it too far by trying to code preconditions for every conceivable eventuality. You should aim to strike a balance between making sure you secure your function against incorrect use, and writing an overly complicated and expensive function that handles cases that are likely never going to occur. For example, it would be sensible to validate the shape of your inflammation data array when it is actually read from the csv file (in load_csv), and therefore there is no reason to test this again in patient_normalise. You can also decide against adding explicit preconditions in your code, and instead state the assumptions and limitations of your code for users of your code in the docstring and rely on them to invoke your code correctly. This approach is useful when explicitly checking the precondition is too costly.

Improving Robustness with Automated Code Style Checks

Let us re-run Pylint over our project after having added some more code to it. From the project root do:

$ pylint inflammation

You may see something like the following in Pylint’s output:

************* Module inflammation.models
...
inflammation/models.py:60:4: W0622: Redefining built-in 'max' (redefined-builtin)
...

The above output indicates that by using the local variable called max in the patient_normalise function, we have redefined a built-in Python function called max. This is not a good idea and may have some undesired effects (e.g. if you redefine a built-in name in a global scope you may cause yourself some trouble which may be difficult to trace).

Exercise: Fix Code Style Errors

Rename our local variable max to something else (e.g. call it max_data), then rerun your tests and commit these latest changes and push them to GitHub using our usual feature branch workflow.

It may be hard to remember to run linter tools every now and then. Luckily, we can now add this Pylint execution to our continuous integration builds as one of the extra tasks. To add Pylint to our CI workflow, we can add the following step to our steps in .github/workflows/main.yml:

...
    - name: Check style with Pylint
      run: |
        python3 -m pylint --fail-under=0 --reports=y inflammation
...

Note we need to add --fail-under=0 otherwise the builds will fail if we do not get a ‘perfect’ score of 10! This seems unlikely, so let us be more pessimistic. We have also added --reports=y which will give us a more detailed report of the code analysis.

Then we can just add this to our repo and trigger a build:

$ git add .github/workflows/main.yml
$ git commit -m "Add Pylint run to build"
$ git push origin test-suite

Then once complete, under the build(s) reports you should see an entry with the output from Pylint as before, but with an extended breakdown of the infractions by category as well as other metrics for the code, such as the number and line percentages of code, docstrings, comments, and empty lines.

So we specified a score of 0 as a minimum which is very low. If we decide as a team on a suitable minimum score for our codebase, we can specify this instead. There are also ways to specify specific style rules that shouldn’t be broken which will cause Pylint to fail, which could be even more useful if we want to mandate a consistent style.

We can specify overrides to Pylint’s rules in a file called .pylintrc which Pylint can helpfully generate for us. In our repository root directory:

$ pylint --generate-rcfile > .pylintrc

Looking at this file, you’ll see it is already pre-populated. No behaviour is currently changed from the default by generating this file, but we can amend it to suit our team’s coding style. For example, a typical rule to customise - favoured by many projects - is the one involving line length. You’ll see it is set to 100, so let us set that to a more reasonable 120. While we are at it, let us also set our fail-under in this file:

...
# Specify a score threshold to be exceeded before program exits with error.
fail-under=0
...
# Maximum number of characters on a single line.
max-line-length=120
...

do not forget to remove the --fail-under argument to Pytest in our GitHub Actions configuration file too, since we do not need it anymore.

Now when we run Pylint we will not be penalised for having a reasonable line length. For some further hints and tips on how to approach using Pylint for a project, see this article.

Merging to develop Branch

Now we are happy with our test suite, we can merge this work (which currently only exist on our test-suite branch) with our parent develop branch. Again, this reflects us working with impunity on a logical unit of work, involving multiple commits, on a separate feature branch until it is ready to be escalated to the develop branch.

Be sure to commit all your changes to test-suite and then merge to the develop branch in the usual manner.

$ git switch develop
$ git merge test-suite

Then, assuming there are no conflicts, we can push these changes back to the remote repository as we have done before:

$ git push origin develop

Now these changes have migrated to our parent develop branch, develop will also inherit the configuration to run CI builds, so these will run automatically on this branch as well.

This highlights a big benefit of CI when you perform merges (and apply pull requests). As new branch code is merged into upstream branches like develop and main these newly integrated code changes are automatically tested together with existing code - which of course may also have been changed by other developers working on the code at the same time.

Key Points

  • Unit testing can show us what does not work, but does not help us locate problems in code.

  • Use a debugger to help you locate problems in code.

  • A debugger allows us to pause code execution and examine its state by adding breakpoints to lines in code.

  • Use preconditions to ensure correct behaviour of code.

  • Ensure that unit tests check for edge and corner cases too.

  • Using linting tools to automatically flag suspicious programming language constructs and stylistic errors can help improve code robustness.


Optional Exercises for Section 2

Overview

Teaching: 0 min
Exercises: 45 min
Questions
  • What is a desirable way to measure and use test coverage?

Objectives
  • Further explore how to measure and use test coverage.

This episode holds some optional exercises for section 2. The exercises have an explorative nature, so feel free to go off in any direction that interests you. You will be looking at some tools that either complement or are alternatives to those already introduced. Even if you find something that you really like, we still recommend sticking with the tools that were introduced prior to this episode when you move onto other sections of the course.

Exercise: Apply to your own project(s)

Apply what you learned in this section to your own project(s). You can think of adding unit tests, add continuous integration pipelines, or measure the test coverage of your project(s) This is the time to ask any questions to your instructors or helpers.

Exercise: Branch coverage versus line coverage

For your test coverage, have a look at the concept of branch coverage as opposed to just line coverage. Which do you prefer and why?

Exercise: Desirable test coverage

Look at the projects below and see how much test coverage they have. Should 100% line (or branch) coverage always be the goal? Why or why not?

Exercise: Coverage badges

Try to add a coverage badge to the inflammation project.

Key Points


Section 3: Software Development as a Process

Overview

Teaching: 10 min
Exercises: 0 min
Questions
  • How can we design and write ‘good’ software that meets its goals and requirements?

Objectives
  • Describe the differences between writing code and engineering software.

  • Define the fundamental stages in a software development process.

  • List the benefits of following a process of software development.

In this section, we will take a step back from coding development practices and tools and look at the bigger picture of software as a process of development.

“If you fail to plan, you are planning to fail.” - Benjamin Franklin

Software design and architecture

Writing Code vs Engineering Software

Traditionally in academia, software - and the process of writing it - is often seen as a necessary but throwaway artefact in research. For example, there may be research questions for a given research project, code is created to answer those questions, the code is run over some data and analysed, and finally a publication is written based on those results. These steps are often taken informally.

The terms programming (or even coding) and software engineering are often used interchangeably. They are not. Programmers or coders tend to focus on one part of software development: implementation, more than any other. In academic research, often they are writing software for themselves, where they are their own stakeholders. And ideally, they write software from a design, that fulfils a research goal to publish research papers.

Someone who is engineering software takes a wider view:

Software Development Process

The typical stages of a software development process can be categorised as follows:

The process of following these stages, particularly when undertaken in this order, is referred to as the waterfall model of software development: each stage’s outputs flow into the next stage sequentially.

Whether projects or people that develop software are aware of them or not, these stages are followed implicitly or explicitly in every software project. What is required for a project (during requirements gathering) is always considered, for example, even if it is not explored sufficiently or well understood.

Following a process of development offers some major benefits:

In this section we will place the actual writing of software (implementation) within the context of a typical software development process:

Key Points

  • Software engineering takes a wider view of software development beyond programming (or coding).

  • Ensuring requirements are sufficiently captured is critical to the success of any project.

  • Following a process makes software development predictable, saves time in the long run, and helps ensure each stage of development is given sufficient consideration before proceeding to the next.

  • Once you get the hang of a programming language, writing code to do what you want is relatively easy. The hard part is writing code that is easy to adapt when your requirements change.


Software Requirements

Overview

Teaching: 25 min
Exercises: 15 min
Questions
  • Where do we start when beginning a new software project?

  • How can we capture and organise what is required for software to function as intended?

Objectives
  • Describe the different types of software requirements.

  • Explain the difference between functional and non-functional requirements.

  • Describe some of the different kinds of software and explain how the environment in which software is used constrains its design.

  • Derive new user and solution requirements from business requirements.

The requirements of our software are the basis on which the whole project rests - if we get the requirements wrong, we will build the wrong software. However, it is unlikely that we will be able to determine all of the requirements upfront. Especially when working in a research context, requirements are flexible and may change as we develop our software.

Types of Requirements

Requirements can be categorised in many ways, but at a high level a useful way to split them is into business requirements, user requirements, and solution requirements. Let us take a look at these now.

Business Requirements

Business requirements describe what is needed from the perspective of the organisation, and define the strategic path of the project, e.g. to increase profit margin or market share, or embark on a new research area or collaborative partnership. These are captured in something like a Business Requirements Specification.

For adapting our inflammation software project, example business requirements could include:

Exercise: New Business Requirements

Think of a new hypothetical business-level requirements for this software. This can be anything you like, but be sure to keep it at the high-level of the business itself.

Solution

One hypothetical new business requirement (BR3) could be extending our clinical trial system to keep track of doctors who are being involved in the project.

Another hypothetical new business requirement (BR4) may be adding a new parameter to the treatment and checking if it improves the effect of the drug being tested - e.g. taking it in conjunction with omega-3 fatty acids and/or increasing physical activity while taking the drug therapy.

User (or Stakeholder) Requirements

These define what particular stakeholder groups each expect from an eventual solution, essentially acting as a bridge between the higher-level business requirements and specific solution requirements. These are typically captured in a User Requirements Specification.

For our inflammation project, they could include things for trial managers such as (building on the business requirements):

Exercise: New User Requirements

Break down your new business requirements from the previous exercise into a number of logical user requirements, ensuring they stay above the level and detail of implementation.

Solution

For our business requirement BR3 from the previous exercise, the new user/stakeholder requirements may be the ability to see all the patients a doctor is being responsible for (UR3.1), and to find out a doctor looking after any individual patient (UR3.2).

For our business requirement BR4 from the previous exercise, the new user/stakeholder requirements may be the ability to see the effect of the drug with and without the additional parameters in all reports and graphs (UR4.1).

Solution Requirements

Solution (or product) requirements describe characteristics that software must have to satisfy the stakeholder requirements. They fall into two key categories:

Labelling Requirements

Note that the naming scheme we used for labelling our requirements is quite arbitrary - you should reference them in a way that is consistent and makes sense within your project and team.

The Importance of Non-functional Requirements

When considering software requirements, it is very tempting to just think about the features users need. However, many design choices in a software project quite rightly depend on the users themselves and the environment in which the software is expected to run, and these aspects should be considered as part of the software’s non-functional requirements.

Exercise: Types of Software

Think about some software you are familiar with (could be software you have written yourself or by someone else) and how the environment it is used in have affected its design or development. Here are some examples of questions you can use to get started:

  • What environment does the software run in?
  • How do people interact with it?
  • Why do people use it?
  • What features of the software have been affected by these factors?
  • If the software needed to be used in a different environment, what difficulties might there be?

Some examples of design / development choices constrained by environment might be:

  • Mobile Apps
    • Must have graphical interface suitable for a touch display
    • Usually distributed via a controlled app store
    • Users will not (usually) modify / compile the software themselves
    • Should work on a range of hardware specifications with a range of Operating System (OS) versions
      • But OS is unlikely to be anything other than Android or iOS
    • Documentation probably in the software itself or on a Web page
    • Typically written in one of the platform preferred languages (e.g. Java, Kotlin, Swift)
  • Embedded Software
    • May have no user interface - user interface may be physical buttons
    • Usually distributed pre-installed on a physical device
    • Often runs on low power device with limited memory and CPU performance - must take care to use these resources efficiently
    • Exact specification of hardware is known - often not necessary to support multiple devices
    • Documentation probably in a technical manual with a separate user manual
    • May need to run continuously for the lifetime of the device
    • Typically written in a lower-level language (e.g. C) for better control of resources

Some More Examples

  • Desktop Application
    • Has a graphical interface for use with mouse and keyboard
    • May need to work on multiple, very different operating systems
    • May be intended for users to modify / compile themselves
    • Should work on a wide range of hardware configurations
    • Documentation probably either in a manual or in the software itself
  • Command-line Application - UNIX Tool
    • User interface is text based, probably via command-line arguments
    • Intended to be modified / compiled by users - though most will choose not to
    • Documentation has standard formats - also accessible from the command line
    • Should be usable as part of a pipeline
  • Command-line Application - High Performance Computing
    • Similar to a UNIX Tool
    • Usually supports running across multiple networked machines simultaneously
    • Usually operated via a scheduler - interface should be scriptable
    • May need to run on a wide range of hardware (e.g. different CPU architectures)
    • May need to process large amounts of data
    • Often entirely or partially written in a lower-level language for performance (e.g. C, C++, Fortran)
  • Web Application
    • Usually has components which run on server and components which run on the user’s device
    • Graphical interface should usually support both Desktop and Mobile devices
    • Client-side component should run on a range of browsers and operating systems
    • Documentation probably part of the software itself
    • Client-side component typically written in JavaScript

Exercise: New Solution Requirements

Now break down your new user requirements from the earlier exercise into a number of logical solution requirements (functional and non-functional), that address the detail required to be able to implement them in the software.

Solution

For our new hypothetical business requirement BR3, new functional solution requirements could be extending the clinical trial system to keep track of:

  • the names of all patients (SR3.1.1) and doctors (SR3.1.2) involved in the trial
  • the name of the doctor for a particular patient (SR3.1.3)
  • a group of patients being administered by a particular doctor (SR3.2.1).

Optional Exercise: Requirements for Your Software Project

Think back to a piece of code or software (either small or large) you have written, or which you have experience using. First, try to formulate a few of its key business requirements, then derive these into user and then solution requirements.

Long- or Short-Lived Code?

Along with requirements, here is something to consider early on. You, perhaps with others, may be developing open-source software with the intent that it will live on after your project completes. It could be important to you that your software is adopted and used by other projects as this may help you get future funding. It can make your software more attractive to potential users if they have the confidence that they can fix bugs that arise or add new features they need, if they can be assured that the evolution of the software is not dependant upon the lifetime of your project. The intended longevity and post-project role of software should be reflected in its requirements - particularly within its non-functional requirements - so be sure to consider these aspects.

On the other hand, you might want to knock together some code to prove a concept or to perform a quick calculation and then just discard it. But can you be sure you will never want to use it again? Maybe a few months from now you will realise you need it after all, or you’ll have a colleague say “I wish I had a…” and realise you have already made one. A little effort now could save you a lot in the future.

From Requirements to Implementation, via Design

In practice, these different types of requirements are sometimes confused and conflated when different classes of stakeholder are discussing them, which is understandable: each group of stakeholders has a different view of what is required from a project. The key is to understand the stakeholder’s perspective as to how their requirements should be classified and interpreted, and for that to be made explicit. A related misconception is that each of these types are simply requirements specified at different levels of detail. At each level, not only are the perspectives different, but so are the nature of the objectives and the language used to describe them, since they each reflect the perspective and language of their stakeholder group.

It is often tempting to go right ahead and implement requirements within existing software, but this neglects a crucial step: do these new requirements fit within our existing design, or does our design need to be revisited? It may not need any changes at all, but if it does not fit logically our design will need a bigger rethink so the new requirement can be implemented in a sensible way. We will look at this a bit later in this section, but simply adding new code without considering how the design and implementation need to change at a high level can make our software increasingly messy and difficult to change in the future.

Key Points

  • When writing software used for research, requirements will almost always change.

  • Consider non-functional requirements (how the software will behave) as well as functional requirements (what the software is supposed to do).

  • The environment in which users run our software has an effect on many design choices we might make.

  • Consider the expected longevity of any code before you write it.

  • The perspective and language of a particular requirement stakeholder group should be reflected in requirements for that group.


Software Architecture and Design

Overview

Teaching: 25 min
Exercises: 25 min
Questions
  • Why should we invest time in software design?

  • What should we consider when designing software?

  • What is software architecture?

Objectives
  • List the common aspects of software architecture and design.

  • Describe the term technical debt and how it impacts software.

  • Understand the goals and principles of designing ‘good’ software.

  • Use a diagramming technique to describe a software architecture.

  • What are the components of Model-View-Controller (MVC) architecture?

  • Understand the use of common design patterns to improve the extensibility, reusability and overall quality of software.

  • List some best practices when designing software.

Introduction

Ideally, we should have at least a rough design of our software sketched out before we write a single line of code. This design should be based around the requirements and the structure of the problem we are trying to solve: what are the concepts we need to represent in our code and what are the relationships between them. And importantly, who will be using our software and how will they interact with it.

As a piece of software grows, it will reach a point where there is too much code for us to keep in mind at once. At this point, it becomes particularly important to think of the overall design and structure of our software, how should all the pieces of functionality fit together, and how should we work towards fulfilling this overall design throughout development. Even if you did not think about the design of your software from the very beginning - it is not too late to start now.

It is not easy to come up with a complete definition for the term software design, but some of the common aspects are:

There is literature on each of the above software design aspects - we will not go into details of them all here. Instead, we will learn some techniques to structure our code better to satisfy some of the requirements of ‘good’ software and revisit our software’s MVC architecture in the context of software design.

Poor Design Choices & Technical Debt

When faced with a problem that you need to solve by writing code - it may be tempted to skip the design phase and dive straight into coding. What happens if you do not follow the good software design and development best practices? It can lead to accumulated ‘technical debt’, which (according to Wikipedia), is the “cost of additional rework caused by choosing an easy (limited) solution now instead of using a better approach that would take longer”. The pressure to achieve project goals can sometimes lead to quick and easy solutions, which make the software become more messy, more complex, and more difficult to understand and maintain. The extra effort required to make changes in the future is the interest paid on the (technical) debt. It is natural for software to accrue some technical debt, but it is important to pay off that debt during a maintenance phase - simplifying, clarifying the code, making it easier to understand - to keep these interest payments on making changes manageable.

There is only so much time available in a project. How much effort should we spend on designing our code properly and using good development practices? The following XKCD comic summarises this tension:

Writing good code comic

At an intermediate level there are a wealth of practices that could be used, and applying suitable design and coding practices is what separates an intermediate developer from someone who has just started coding. The key for an intermediate developer is to balance these concerns for each software project appropriately, and employ design and development practices enough so that progress can be made. It is very easy to under-design software, but remember it is also possible to over-design software too.

Good Software Design Goals

Aspirationally, what makes good code can be summarised in the following quote from the Intent HG blog:

“Good code is written so that is readable, understandable, covered by automated tests, not over complicated and does well what is intended to do.”

Software has become a crucial aspect of reproducible research, as well as an asset that can be reused or repurposed. Thus, it is even more important to take time to design the software to be easily modifiable and extensible, to save ourselves and our team a lot of time later on when we have to fix a problem or the software’s requirements change.

Satisfying the above properties will lead to an overall software design goal of having maintainable code, which is:

Now that we know what goals we should aspire to, let us take a critical look at the code in our software project and try to identify ways in which it can be improved.

Our software project contains a pre-existing branch full-data-analysis which contains code for a new feature of our inflammation analysis software, which we will consider as a contribution by another developer. Recall that you can see all your branches as follows:

$ git branch --all

Once you have saved and committed any current changes, checkout this full-data-analysis branch:

git switch full-data-analysis

This new feature enables user to pass a new command-line parameter --full-data-analysis causing the software to find the directory containing the first input data file (provided via command line parameter infiles) and invoke the data analysis over all the data files in that directory. This bit of functionality is handled by inflammation-analysis.py in the project root.

The new data analysis code is located in compute_data.py file within the inflammation directory in a function called analyse_data(). This function loads all the data files for a given a directory path, then calculates and compares standard deviation across all the data by day and finaly plots a graph.

Exercise: Identify How Can Code be Improved?

Critically examine the code in analyse_data() function in compute_data.py file.

In what ways does this code not live up to the ideal properties of ‘good’ code? Think about ways in which you find it hard to read and understand. Think about the kinds of changes you might want to make to it, and what would make those changes challenging.

Solution

You may have found others, but here are some of the things that make the code hard to read, test and maintain.

  • Hard to read: everything is implemented in a single function. In order to understand it, you need to understand how file loading works at the same time as the analysis itself.
  • Hard to read: using the --full-data-analysis flag changes the meaning of the infiles argument to indicate a single data directory, instead of a set of data files, which may cause confusion.
  • Hard to modify: if you wanted to use the data for some other purpose and not just plotting the graph you would have to change the analysis_data() function.
  • Hard to modify or test: it only analyses a set of CSV data files matching a very particular hardcoded inflammation*.csv pattern, which seems an unreasonable assumption. What if someone wanted to use files which do not match this naming convention?
  • Hard to modify: it does not have any tests so we cannot be 100% confident the code does what it claims to do; any changes to the code may break something and it would be harder and more time-consuming to figure out what.

Make sure to keep the list you have created in the exercise above. For the remainder of this section, we will work on improving this code. At the end, we will revisit your list to check that you have learnt ways to address each of the problems you had found.

There may be other things to improve with the code on this branch, e.g. how command line parameters are being handled in inflammation-analysis.py, but we are focussing on analyse_data() function for the time being.

Software Architecture

A software architecture is the fundamental structure of a software system that is typically decided at the beginning of project development based on its requirements and is not that easy to change once implemented. It refers to a “bigger picture” of a software system that describes high-level components (modules) of the system, what their functionality/roles are and how they interact.

The basic idea with software architecture design is that you draw boxes that will represent different units of code, as well as other components of the system (such as users, databases, etc). Then connect these boxes with lines where information or control will be exchanged. These lines represent the interfaces in your system.

As well as helping to visualise the work, doing this sketch can troubleshoot potential issues. For example, if there is a circular dependency between two sections of the design. It can also help with estimating how long the work will take, as it forces you to consider all the components that need to be made.

Diagrams are not flawless, but are a great starting point to break down the different responsibilities and think about the kinds of information different parts of the system will need.

Exercise: Design a High-Level Architecture for a New Requirement

Sketch out an architectural design for a new feature requested by a user.

“I want there to be a Google Drive folder such that when I upload new inflammation data to it, the software automatically pulls it down and updates the analysis. The new result should be added to a database with a timestamp. An email should then be sent to a group mailing list notifying them of the change.”

You can draw by hand on a piece of paper or whiteboard, or use an online drawing tool such as Excalidraw.

Solution

Diagram showing proposed architecture of the problem

We have been developing our software using the Model-View-Controller (MVC) architecture, but MVC is just one of the common software architectural patterns and is not the only choice we could have made.

Model-View-Controller (MVC) Architecture

Recall that the MVC architecture divides the related program logic into three interconnected components or modules:

The Model represents the data used by a program and also contains operations/rules for manipulating and changing the data in the model. This may be a database, a file, a single data object or a series of objects - for example a table representing patients’ data.

The View is the means of displaying data to users/clients within an application (i.e. provides visualisation of the state of the model). For example, displaying a window with input fields and buttons (Graphical User Interface, GUI) or textual options within a command line (Command Line Interface, CLI) are examples of Views. They include anything that the user can see from the application. While building GUIs is not the topic of this course, we do cover building CLIs (handling command line arguments) in Python to a certain extent.

The Controller manipulates both the Model and the View. It accepts input from the View and performs the corresponding action on the Model (changing the state of the model) and then updates the View accordingly. For example, on user request, Controller updates a picture on a user’s GitHub profile and then modifies the View by displaying the updated profile back to the user.

Limitations to Architectural Design

There are limits to everything - and MVC architecture is no exception. The Controller often transcends into the Model and View, and a clear separation is sometimes difficult to maintain. For example, the Command Line Interface provides both the View (what user sees and how they interact with the command line) and the Controller (invoking of a command) aspects of a CLI application. In Web applications, Controller often manipulates the data (received from the Model) before displaying it to the user or passing it from the user to the Model.

There are many variants of an MVC-like pattern (such as Model-View-Presenter (MVP), Model-View-Viewmodel (MVVM), etc.), where the Controller role is handled slightly differently, but in most cases, the distinction between these patterns is not particularly important. What really matters is that we are making conscious decisions about the architecture of our software that suit the way in which we expect to use it. We should reuse and be consistent with these established ideas where we can, but we do not need to stick to them exactly.

The key thing to take away is the distinction between the Model and the View code, while the View and the Controller can be more or less coupled together (e.g. the code that specifies there is a button on the screen, might be the same code that specifies what that button does). The View may be hard to test, or use special libraries to draw the UI, but should not contain any complex logic, and is really just a presentation layer on top of the Model. The Model, conversely, should not care how the data is displayed. For example, the View may present dates as “Monday 24th July 2023”, but the Model stores it using a Date object rather than its string representation.

Reusable “Patterns” of Architecture

Architectural and programming patterns are reusable templates for software systems and code that provide solutions for some common software design challenges. MVC is one architectural pattern. Patterns are a useful starting point for how to design your software and also provide a common vocabulary for discussing software designs with other developers. They may not always provide a full design solution as some problems may require a bespoke design that maps cleanly on to the specific problem you are trying to solve.

Architectural Design Guidelines

Creating good software architecture is not about applying any rules or patterns blindly, but instead practise and taking care to:

Techniques for Good Software Design

Once we have a good high-level architectural design, it is important to follow this philosophy through to the process of developing the code itself, and there are some key techniques to keep in mind that will help.

As we have discussed, how code is structured is important for helping people who are developing and maintaining it to understand and update it. By breaking down our software into modular components with a single responsibility, we avoid having to rewrite it all when requirements change. This also means that these smaller components can be understood individually without having to understand the entire codebase at once. The following techniques build on this concept of modularity:

Writing good code is hard and takes practise. You may also be faced with an existing piece of code that breaks some (or all) of the good code principles, and your job will be to improve/refactor it so that it can evolve further. We will now look into some examples of these techniques that can help us redesign our code and incrementally improve its quality.

Key Points

  • ‘Good’ code is designed to be maintainable: readable by people who did not author the code, testable through a set of automated tests, adaptable to new requirements.

  • Use abstraction and decoupling to logically separate the different aspects of your software within design as well as implementation.

  • Use refactoring to improve existing code to improve its consistency internally and within its overall architecture.

  • Include software design as a key stage in the lifecycle of your project so that development and maintenance becomes easier.


Code Decoupling & Abstractions

Overview

Teaching: 30 min
Exercises: 45 min
Questions
  • What is decoupled code?

  • What are commonly used code abstractions?

  • When is it useful to use classes to structure code?

  • How can we make sure the components of our software are reusable?

Objectives
  • Understand the benefits of code decoupling.

  • Introduce appropriate abstractions to simplify code.

  • Understand the principles of encapsulation, polymorphism and interfaces.

  • Use mocks to replace a class in test code.

Introduction

Code decoupling refers to breaking up the software into smaller components and reducing the interdependence between these components so that they can be tested and maintained independently. Two components of code can be considered decoupled if a change in one does not necessitate a change in the other. While two connected units cannot always be totally decoupled, loose coupling is something we should aim for.

Code abstraction is the process of hiding the implementation details of a piece of code behind an interface - i.e. the details of how something works are hidden away, leaving us to deal only with what it does. This allows developers to work with the code at a higher level of abstraction, without needing to understand fully (or keep in mind) all the underlying details and thereby reducing the cognitive load when programming.

Abstractions can aid decoupling of code. If one part of the code only uses another part through an appropriate abstraction then it becomes easier for these parts to change independently. Benefits of using these techniques include having the codebase that is:

Let us start redesigning our code by introducing some of the abstraction techniques to incrementally decouple it into smaller components to improve its overall design.

In the code from our current branch full-data-analysis, you may have noticed that loading data from CSV files from a data directory is “hardcoded” into the analyse_data() function. Data loading is a functionality separate from data analysis, so firstly let us decouple the data loading part into a separate component (function).

Exercise: Decouple Data Loading from Data Analysis

Modify compute_data.py to separate out the data loading functionality from analyse_data() into a new function load_inflammation_data(), that returns a list of 2D NumPy arrays with inflammation data loaded from all inflammation CSV files found in a specified directory path. Then, change your analyse_data() function to make use of this new function instead.

Solution

The new function load_inflammation_data() that reads all the inflammation data into the format needed for the analysis could look something like: .

def load_inflammation_data(dir_path):
    data_file_paths = glob.glob(os.path.join(dir_path, 'inflammation*.csv'))
    if len(data_file_paths) == 0:
        raise ValueError(f"No inflammation CSV files found in path {dir_path}")
    data = map(models.load_csv, data_file_paths) # Load inflammation data from each CSV file
    return list(data) # Return the list of 2D NumPy arrays with inflammation data

The new function analyse_data() could then look like:

def analyse_data(data_dir):
    data = load_inflammation_data(data_dir)

    means_by_day = map(models.daily_mean, data)
    means_by_day_matrix = np.stack(list(means_by_day))

    daily_standard_deviation = np.std(means_by_day_matrix, axis=0)

    graph_data = {
        'standard deviation by day': daily_standard_deviation,
    }
    views.visualize(graph_data)

The code is now easier to follow since we do not need to understand the data loading part to understand the statistical analysis part, and vice versa. In most cases, functions work best when they are short!

However, even with this change, the data loading is still coupled with the data analysis to a large extent. For example, if we have to support loading data from different sources (e.g. JSON files or an SQL database), we would have to pass some kind of a flag into analyse_data() indicating the type of data we want to read from. Instead, we would like to decouple the consideration of data source from the analyse_data() function entirely. One way we can do this is by using encapsulation and classes.

Encapsulation & Classes

Encapsulation is the process of packing the “data” and “functions operating on that data” into a single component/object. It is also provides a mechanism for restricting the access to that data. Encapsulation means that the internal representation of a component is generally hidden from view outside of the component’s definition.

Encapsulation allows developers to present a consistent interface to the component/object that is independent of its internal implementation. For example, encapsulation can be used to hide the values or state of a structured data object inside a class, preventing direct access to them that could violate the object’s state maintained by the class’ methods. Note that object-oriented programming (OOP) languages support encapsulation, but encapsulation is not unique to OOP.

So, a class is a way of grouping together data with some methods that manipulate that data. In Python, you can declare a class as follows:

class Circle:
  pass

Classes are typically named using “CapitalisedWords” naming convention - e.g. FileReader, OutputStream, Rectangle.

You can construct an instance of a class elsewhere in the code by doing the following:

my_circle = Circle()

When you construct a class in this ways, the class’ constructor method is called. It is also possible to pass values to the constructor in order to configure the class instance:

class Circle:
  def __init__(self, radius):
    self.radius = radius

my_circle = Circle(10)

The constructor has the special name __init__. Note it has a special first parameter called self by convention - it is used to access the current instance of the object being created.

A class can be thought of as a cookie cutter template, and instances as the cookies themselves. That is, one class can have many instances.

Classes can also have other methods defined on them. Like constructors, they have the special parameter self that must come first.

import math

class Circle:
  ...
  def get_area(self):
    return math.pi * self.radius * self.radius
...
print(my_circle.get_area())

On the last line of the code above, the instance of the class, my_circle, will be automatically passed as the first parameter (self) when calling the get_area() method. The get_area() method can then access the variable radius encapsulated within the object, which is otherwise invisible to the world outside of the object. The method get_area() itself can also be accessed via the object/instance only.

As we can see, internal representation of any instance of class Circle is hidden outside of this class (encapsulation). In addition, implementation of the method get_area() is hidden too (abstraction).

Encapsulation & Abstraction

Encapsulation provides information hiding. Abstraction provides implementation hiding.

Exercise: Use Classes to Abstract out Data Loading

Inside compute_data.py, declare a new class CSVDataSource that contains the load_inflammation_data() function we wrote in the previous exercise as a method of this class. The directory path where to load the files from should be passed in the class’ constructor method. Finally, construct an instance of the class CSVDataSource outside the statistical analysis and pass it to analyse_data() function.

Hint

At the end of this exercise, the code in the analyse_data() function should look like:

def analyse_data(data_source):
    data = data_source.load_inflammation_data()
    ...

The controller code should look like:

data_source = CSVDataSource(os.path.dirname(infiles[0]))
analyse_data(data_source)

Solution

For example, we can declare class CSVDataSource like this:

class CSVDataSource:
    """
    Loads all the inflammation CSV files within a specified directory.
    """
    def __init__(self, dir_path):
        self.dir_path = dir_path

    def load_inflammation_data(self):
        data_file_paths = glob.glob(os.path.join(self.dir_path, 'inflammation*.csv'))
        if len(data_file_paths) == 0:
            raise ValueError(f"No inflammation CSV files found in path {self.dir_path}")
        data = map(models.load_csv, data_file_paths)
        return list(data)

In the controller, we create an instance of CSVDataSource and pass it into the the statistical analysis function.

data_source = CSVDataSource(os.path.dirname(infiles[0]))
analyse_data(data_source)

The analyse_data() function is modified to receive any data source object (that implements the load_inflammation_data() method) as a parameter.

def analyse_data(data_source):
    data = data_source.load_inflammation_data()
    ...

We have now fully decoupled the reading of the data from the statistical analysis and the analysis is not fixed to reading from a directory of CSV files. Indeed, we can pass various data sources to this function now, as long as they implement the load_inflammation_data() method.

While the overall behaviour of the code and its results are unchanged, the way we invoke data analysis has changed.

Interfaces

An interface is another important concept in software design related to abstraction and encapsulation. For a software component, it declares the operations that can be invoked on that component, along with input arguments and what it returns. By knowing these details, we can communicate with this component without the need to know how it implements this interface.

API (Application Programming Interface) is one example of an interface that allows separate systems (external to one another) to communicate with each other. For example, a request to Google Maps service API may get you the latitude and longitude for a given address. Twitter API may return all tweets that contain a given keyword that have been posted within a certain date range.

Internal interfaces within software dictate how different parts of the system interact with each other. Even when these are not explicitly documented - they still exist.

For example, our Circle class implicitly has an interface - you can call get_area() method on it and it will return a number representing its surface area.

Exercise: Identify an Interface Between CSVDataSource and analyse_data

What would you say is the interface between the CSVDataSource class and analyse_data() function? Think about what functions analyse_data() needs to be able to call to perform its duty, what parameters they need and what they return.

Solution

The interface is the load_inflammation_data() method, which takes no parameters and returns a list where each entry is a 2D NumPy array of patient inflammation data (read from some data source).

Any object passed into analyse_data() should conform to this interface.

Polymorphism

In general, polymorphism is the idea of having multiple implementations/forms/shapes of the same abstract concept. It is the provision of a single interface to entities of different types, or the use of a single symbol to represent multiple different types.

There are different versions of polymorphism. For example, method or operator overloading is one type of polymorphism enabling methods and operators to take parameters of different types.

We will have a look at the interface-based polymorphism. In OOP, it is possible to have different object classes that conform to the same interface. For example, let us have a look at the following class representing a Rectangle:

class Rectangle:
  def __init__(self, width, height):
    self.width = width
    self.height = height
  def get_area(self):
    return self.width * self.height

Like Circle, this class provides the get_area() method. The method takes the same number of parameters (none), and returns a number. However, the implementation is different. This is interface-based polymorphism.

The word “polymorphism” means “many forms”, and in programming it refers to methods/functions/operators with the same name that can be executed on many objects or classes.

Using our Circle and Rectangle classes, we can create a list of different shapes and iterate through the list to find their total surface area as follows:

my_circle = Circle(radius=10)
my_rectangle = Rectangle(width=5, height=3)
my_shapes = [my_circle, my_rectangle]
total_area = sum(shape.get_area() for shape in my_shapes)

Note that we have not created a common superclass or linked the classes Circle and Rectangle together in any way. It is possible due to polymorphism. You could also say that, when we are calculating the total surface area, the method for calculating the area of each shape is abstracted away to the relevant class.

How can polymorphism be useful in our software project? For example, we can replace our CSVDataSource with another class that reads a totally different file format (e.g. JSON), or reads from an external service or a database. All of these changes can be now be made without changing the analysis function as we have decoupled the process of data loading from the data analysis earlier. Conversely, if we wanted to write a new analysis function, we could support any of these data sources with no extra work.

Exercise: Add an Additional DataSource

Create another class that supports loading patient data from JSON files, with the appropriate load_inflammation_data() method. There is a function in models.py that loads from JSON in the following format:

[
  {
    "observations": [0, 1]
  },
  {
    "observations": [0, 2]
  }
]

Finally, at run-time, construct an appropriate data source instance based on the file extension.

Solution

The class that reads inflammation data from JSON files could look something like:

class JSONDataSource:
  """
  Loads patient data with inflammation values from JSON files within a specified folder.
  """
  def __init__(self, dir_path):
    self.dir_path = dir_path

  def load_inflammation_data(self):
    data_file_paths = glob.glob(os.path.join(self.dir_path, 'inflammation*.json'))
    if len(data_file_paths) == 0:
      raise ValueError(f"No inflammation JSON files found in path {self.dir_path}")
    data = map(models.load_json, data_file_paths)
    return list(data)

Additionally, in the controller we will need to select an appropriate DataSource instance to provide to the analysis:

_, extension = os.path.splitext(infiles[0])
if extension == '.json':
  data_source = JSONDataSource(os.path.dirname(infiles[0]))
elif extension == '.csv':
  data_source = CSVDataSource(os.path.dirname(infiles[0]))
else:
  raise ValueError(f'Unsupported data file format: {extension}')
analyse_data(data_source)

As you can seen, all the above changes have been made made without modifying the analysis code itself.

Testing Using Mock Objects

We can use a mock object abstraction to make testing more straightforward. Instead of having our tests use real data stored on a file system, we can provide a mock or dummy implementation instead of one of the real classes. Providing that what we use as a substitute conforms to the same interface, the code we are testing should work just the same. Such mock/dummy implementation could just return some fixed example data.

An convenient way to do this in Python is using Python’s mock object library. This is a whole topic in itself - but a basic mock can be constructed using a couple of lines of code:

from unittest.mock import Mock

mock_version = Mock()
mock_version.method_to_mock.return_value = 42

Here we construct a mock in the same way you would construct a class. Then we specify a method that we want to behave a specific way.

Now whenever you call mock_version.method_to_mock() the return value will be 42.

Exercise: Test Using a Mock Implementation

Complete this test for analyse_data(), using a mock object in place of the data_source:

from unittest.mock import Mock

def test_compute_data_mock_source():
  from inflammation.compute_data import analyse_data
  data_source = Mock()

  # TODO: configure data_source mock

  result = analyse_data(data_source)

  # TODO: add assert on the contents of result

Create a mock that returns some fixed data and to use as the data_source in order to test the analyse_data method. Use this mock in a test.

Do not forget to import Mock from the unittest.mock package.

Solution

from unittest.mock import Mock

def test_compute_data_mock_source():
  from inflammation.compute_data import analyse_data
  data_source = Mock()
  data_source.load_inflammation_data.return_value = [[[0, 2, 0]],
                                                     [[0, 1, 0]]]

  result = analyse_data(data_source)
  npt.assert_array_almost_equal(result, [0, math.sqrt(0.25) ,0])

Safe Code Structure Changes

With the changes to the code structure we have done using code decoupling and abstractions we have already refactored our code to a certain extent but we have not tested that the changes work as intended. We will now look into how to properly refactor code to guarantee that the code still works as before any modifications.

Key Points

  • Code decoupling is separating code into smaller components and reducing the interdependence between them so that the code is easier to understand, test and maintain.

  • Abstractions can hide certain details of the code behind classes and interfaces.

  • Encapsulation bundles data into a structured component along with methods that operate on the data, and provides a mechanism for restricting access to that data, hiding the internal representation of the component.

  • Polymorphism describes the provision of a single interface to entities of different types, or the use of a single symbol to represent different types.


Code Refactoring

Overview

Teaching: 30 min
Exercises: 20 min
Questions
  • How do you refactor existing code without breaking it?

  • What are benefits of using pure functions in code?

Objectives
  • Employ code refactoring to improve the structure of existing code.

  • Understand the use of regressions tests to avoid breaking existing code when refactoring.

  • Understand the use of pure functions in software design to make the code easier to read, test amd maintain.

  • Refactor a piece of code to separate out ‘pure’ from ‘impure’ code.

Introduction

Code refactoring is the process of improving the design of an existing codebase - changing the internal structure of code without changing its external behavior, with the goal of making the code more readable, maintainable, efficient or easier to test. This can include introducing things such as code decoupling and abstractions, but also renaming variables, reorganising functions to avoid code duplication and increase reuse, and simplifying conditional statements.

In the previous episode, we have already changed the structure of our code (i.e. refactored it to a certain extent) when we separated out data loading from data analysis but we have not tested that the new code works as intended. This is particularly important with bigger code changes but even a small change can easily break the codebase and introduce bugs.

When faced with an existing piece of code that needs modifying a good refactoring process to follow is:

  1. Make sure you have tests that verify the current behaviour
  2. Refactor the code
  3. Verify that that the behaviour of the code is identical to that before refactoring.

In this episode we will further improve the code from our project in the following two ways:

Writing Tests Before Refactoring

When refactoring, first we need to make sure there are tests in place that can verify the code behaviour as it is now (or write them if they are missing), then refactor the code and, finally, check that the original tests still pass.

There is a bit of a “chicken and egg” problem here - if the refactoring is supposed to make it easier to write tests in the future, how can we write tests before doing the refactoring? The tricks to get around this trap are:

The best tests are the ones that test a single bit of functionality rigorously. However, with our current analyse_data() code that is not possible because it is a large function doing a little bit of everything. Instead we will make minimal changes to the code to make it a bit more testable.

Firstly, we will modify the function to return the data instead of visualising it because graphs are harder to test automatically (i.e. they need to be viewed and inspected manually in order to determine their correctness). Next, we will make the assert statements verify what the current outcome is, rather than check whether that is correct or not. Such tests are meant to verify that the behaviour does not change rather than checking the current behaviour is correct (there should be another set of tests checking the correctness). This kind of testing is called regression testing as we are testing for regressions in existing behaviour.

Refactoring code is not meant to change its behaviour, but sometimes to make it possible to verify you are not changing the important behaviour you have to make small tweaks to the code to write the tests at all.

Exercise: Write Regression Tests

Modify the analyse_data() function not to plot a graph and return the data instead. Then, add a new test file called test_compute_data.py in the tests folder and add a regression test to verify the current output of analyse_data(). We will use this test in the remainder of this section to verify the output analyse_data() is unchanged each time we refactor or change code in the future.

Start from the skeleton test code below:

def test_analyse_data():
    from inflammation.compute_data import analyse_data
    path = Path.cwd() / "../data"
    data_source = CSVDataSource(path)
    result = analyse_data(data_source)

    # TODO: add assert statement(s) to test the result value is as expected

Use assert_array_almost_equal from the numpy.testing library to compare arrays of floating point numbers.

Hint

When determining the correct return data result to use in tests, it may be helpful to assert the result equals some random made-up data, observe the test fail initially and then copy and paste the correct result into the test.

Solution

One approach we can take is to:

  • comment out the visualise method on analyse_data() (this will cause our test to hang waiting for the result data)
  • return the data (instead of plotting it on a graph), so we can write assert statements on the data
  • see what the calculated result value is, and assert that it is the same as the expected value

Putting this together, our test may look like:

import numpy.testing as npt
from pathlib import Path

def test_analyse_data():
    from inflammation.compute_data import analyse_data
    path = Path.cwd() / "../data"
    data_source = CSVDataSource(path)
    result = analyse_data(data_source)
    expected_output = [0.,0.22510286,0.18157299,0.1264423,0.9495481,0.27118211,
                       0.25104719,0.22330897,0.89680503,0.21573875,1.24235548,0.63042094,
                       1.57511696,2.18850242,0.3729574,0.69395538,2.52365162,0.3179312,
                       1.22850657,1.63149639,2.45861227,1.55556052,2.8214853,0.92117578,
                       0.76176979,2.18346188,0.55368435,1.78441632,0.26549221,1.43938417,
                       0.78959769,0.64913879,1.16078544,0.42417995,0.36019114,0.80801707,
                       0.50323031,0.47574665,0.45197398,0.22070227]
    npt.assert_array_almost_equal(result, expected_output)

Note that while the above test will detect if we accidentally break the analysis code and change the output of the analysis, it is still not a complete test for the following reasons:

  • It is not obvious why the expected_output is correct
  • It does not test edge cases
  • If the data files in the directory change - the test will fail

We would need to add additional tests to check the above.

Separating Pure and Impure Code

Now that we have our regression test for analyse_data() in place, we are ready to refactor the function further. We would like to separate out as much of its code as possible as pure functions.

Pure Functions

A pure function in programming works like a mathematical function - it takes in some input and produces an output and that output is always the same for the same input. That is, the output of a pure function does not depend on any information which is not present in the input (such as global variables). Furthermore, pure functions do not cause any side effects - they do not modify the input data or data that exist outside the function (such as printing text, writing to a file or changing a global variable). They perform actions that affect nothing but the value they return.

Benefits of Pure Functions

Pure functions are easier to understand because they eliminate side effects. The reader only needs to concern themselves with the input parameters of the function and the function code itself, rather than the overall context the function is operating in. Similarly, a function that calls a pure function is also easier to understand - we only need to understand what the function returns, which will probably be clear from the context in which the function is called. Finally, pure functions are easier to reuse as the caller only needs to understand what parameters to provide, rather than anything else that might need to be configured prior to the call. For these reasons, you should try and have as much of the complex, analytical and mathematical code are pure functions.

Some parts of a program are inevitably impure. Programs need to read input from users, generate a graph, or write results to a file or a database. Well designed programs separate complex logic from the necessary impure “glue” code that interacts with users and other systems. This way, you have easy-to-read and easy-to-test pure code that contains the complex logic and simplified impure code that reads data from a file or gathers user input. Impure code may be harder to test but, when simplified like this, may only require a handful of tests anyway.

Exercise: Refactoring To Use a Pure Function

Refactor the analyse_data() function to delegate the data analysis to a new pure function compute_standard_deviation_by_day() and separate it from the impure code that handles the input and output. The pure function should take in the data, and return the analysis result, as follows:

def compute_standard_deviation_by_day(data):
    # TODO
    return daily_standard_deviation

Solution

The analysis code will be refactored into a separate function that may look something like:

def compute_standard_deviation_by_day(data):
    means_by_day = map(models.daily_mean, data)
    means_by_day_matrix = np.stack(list(means_by_day))

    daily_standard_deviation = np.std(means_by_day_matrix, axis=0)
    return daily_standard_deviation

The analyse_data() function now calls the compute_standard_deviation_by_day() function, while keeping all the logic for reading the data, processing it and showing it in a graph:

def analyse_data(data_dir):
    """Calculates the standard deviation by day between datasets.
    Gets all the inflammation data from CSV files within a directory, works out the mean
    inflammation value for each day across all datasets, then visualises the
    standard deviation of these means on a graph."""
    data_file_paths = glob.glob(os.path.join(data_dir, 'inflammation*.csv'))
    if len(data_file_paths) == 0:
        raise ValueError(f"No inflammation csv's found in path {data_dir}")
    data = map(models.load_csv, data_file_paths)
    daily_standard_deviation = compute_standard_deviation_by_day(data)

    graph_data = {
        'standard deviation by day': daily_standard_deviation,
    }
    # views.visualize(graph_data)
    return daily_standard_deviation

Make sure to re-run the regression test to check this refactoring has not changed the output of analyse_data().

Testing Pure Functions

Now we have our analysis implemented as a pure function, we can write tests that cover all the things we would like to check without depending on CSVs files. This is another advantage of pure functions - they are very well suited to automated testing, i.e. their tests are:

Exercise: Testing a Pure Function

Add tests for compute_standard_deviation_by_data() that check for situations when there is only one file with multiple rows, multiple files with one row, and any other cases you can think of that should be tested.

Solution

You might have thought of more tests, but we can easily extend the test by parametrizing with more inputs and expected outputs:

@pytest.mark.parametrize('data,expected_output', [
    ([[[0, 1, 0], [0, 2, 0]]], [0, 0, 0]),
    ([[[0, 2, 0]], [[0, 1, 0]]], [0, math.sqrt(0.25), 0]),
    ([[[0, 1, 0], [0, 2, 0]], [[0, 1, 0], [0, 2, 0]]], [0, 0, 0])
],
ids=['Two patients in same file', 'Two patients in different files', 'Two identical patients in two different files'])
def test_compute_standard_deviation_by_day(data, expected_output):
    from inflammation.compute_data import compute_standard_deviation_by_data

    result = compute_standard_deviation_by_data(data)
    npt.assert_array_almost_equal(result, expected_output)

Functional Programming

Functional programming is a programming paradigm where programs are constructed by applying and composing/chaining pure functions. Some programming languages, such as Haskell or Lisp, support writing pure functional code only. Other languages, such as Python, Java, C++, allow mixing functional and procedural programming paradigms. Read more in the extra episode on functional programming and when it can be very useful to switch to this paradigm (e.g. to employ MapReduce approach for data processing).

There are no definite rules in software design but making your complex logic out of composed pure functions is a great place to start when trying to make your code readable, testable and maintainable. This is particularly useful for:

Programming Paradigms

Until this section, we have mainly been writing procedural code. In the previous episode, we have touched a bit upon classes, encapsulation and polymorphism, which are characteristics of (but not limited to) the object-oriented programming (OOP). In this episode, we mentioned pure functions and Functional Programming.

These are examples of different programming paradigms and provide varied approaches to structuring your code - each with certain strengths and weaknesses when used to solve particular types of problems. In many cases, particularly with modern languages, a single language can allow many different structural approaches and mixing programming paradigms within your code. Once your software begins to get more complex - it is common to use aspects of different paradigm to handle different subtasks. Because of this, it is useful to know about the major paradigms, so you can recognise where it might be useful to switch. This is outside of scope of this course - we have some extra episodes on the topics of procedural programming, functional programming and object-oriented programming if you want to know more.

So Which One is Python?

Python is a multi-paradigm and multi-purpose programming language. You can use it as a procedural language and you can use it in a more object oriented way. It does tend to land more on the object oriented side as all its core data types (strings, integers, floats, booleans, lists, sets, arrays, tuples, dictionaries, files) as well as functions, modules and classes are objects.

Since functions in Python are also objects that can be passed around like any other object, Python is also well suited to functional programming. One of the most popular Python libraries for data manipulation, Pandas (built on top of NumPy), supports a functional programming style as most of its functions on data are not changing the data (no side effects) but producing a new data to reflect the result of the function.

Software Design and Architecture

In this section so far we have been talking about software design - the individual modules and components of the software. We are now going to have a brief look into software architecture - which is about the overall structure that these software components fit into, a design pattern with a common successful use of software components.

Key Points

  • Code refactoring is a technique for improving the structure of existing code.

  • Implementing regression tests before refactoring gives you confidence that your changes have not broken the code.

  • Using pure functions that process data without side effects whenever possible makes the code easier to understand, test and maintain.


Software Architecture Revisited

Overview

Teaching: 15 min
Exercises: 30 min
Questions
  • How do we handle code contributions that do not fit within our existing architecture?

Objectives
  • Analyse new code to identify Model, View, Controller aspects.

  • Refactor new code to conform to an MVC architecture.

  • Adapt our existing code to include the new re-architected code.

In the previous few episodes we have looked at the importance and principles of good software architecture and design, and how techniques such as code abstraction and refactoring fulfil that design within an implementation, and help us maintain and improve it as our code evolves.

Let us now return to software architecture and consider how we may refactor some new code to fit within our existing MVC architectural design using the techniques we have learnt so far.

Revisiting Our Software’s Architecture

Recall that in our software project, the Controller module is in inflammation-analysis.py, and the View and Model modules are contained in inflammation/views.py and inflammation/models.py, respectively. Data underlying the Model is contained within the directory data.

Looking at the code in the branch full-data-analysis (where we should be currently located), we can notice that the new code was added in a separate script inflammation/compute_data.py and contains a mix of Model, View and Controller code.

Exercise: Identify Model, View and Controller Parts of the Code

Looking at the code inside compute_data.py, what parts could be considered Model, View and Controller code?

Solution

  • Computing the standard deviation belongs to Model.
  • Reading the data from CSV files also belongs to Model.
  • Displaying of the output as a graph is View.
  • The logic that processes the supplied files is Controller.

Within the Model further separations make sense. For example, as we did in the before, separating out the impure code that interacts with the file system from the pure calculations helps with readability and testability. Nevertheless, the MVC architectural pattern is a great starting point when thinking about how you should structure your code.

Exercise: Split out the Model, View and Controller Code

Refactor analyse_data() function so that the Model, View and Controller code we identified in the previous exercise is moved to appropriate modules.

Solution

The idea here is for the analyse_data() function not to have any “view” considerations. That is, it should just compute and return the data and should be located in inflammation/models.py.

def analyse_data(data_source):
    """Calculate the standard deviation by day between datasets
    Gets all the inflammation csvs within a directory, works out the mean
    inflammation value for each day across all datasets, then graphs the
    standard deviation of these means."""
    data = data_source.load_inflammation_data()
    daily_standard_deviation = compute_standard_deviation_by_data(data)

    return daily_standard_deviation

There can be a separate bit of code in the Controller inflammation-analysis.py that chooses how data should be presented, e.g. as a graph:

if args.full_data_analysis:
    _, extension = os.path.splitext(infiles[0])
    if extension == '.json':
        data_source = JSONDataSource(os.path.dirname(infiles[0]))
    elif extension == '.csv':
        data_source = CSVDataSource(os.path.dirname(infiles[0]))
    else:
        raise ValueError(f'Unsupported file format: {extension}')
    data_result = analyse_data(data_source)
    graph_data = {
        'standard deviation by day': data_result,
    }
    views.visualize(graph_data)
    return

Note that this is, more or less, the change we did to write our regression test. This demonstrates that splitting up Model code from View code can immediately make your code much more testable. Ensure you re-run our regression test to check this refactoring has not changed the output of analyse_data().

At this point, you have refactored and tested all the code on branch full-data-analysis and it is working as expected. The branch is ready to be incorporated into develop and then, later on, main, which may also have been changed by other developers working on the code at the same time so make sure to update accordingly or resolve any conflicts.

$ git switch develop
$ git merge full-data-analysis

Let us now have a closer look at our Controller, and how can handling command line arguments in Python (which is something you may find yourself doing often if you need to run the code from a command line tool).

Controller Structure

You will have noticed already that structure of the inflammation-analysis.py file follows this pattern:

# import modules

def main(args):
    # perform some actions

if __name__ == "__main__":
    # perform some actions before main()
    main(args)

In this pattern the actions performed by the script are contained within the main function (which does not need to be called main, but using this convention helps others in understanding your code). The main function is then called within the if statement __name__ == "__main__", after some other actions have been performed (usually the parsing of command-line arguments, which will be explained below). __name__ is a special dunder variable which is set, along with a number of other special dunder variables, by the python interpreter before the execution of any code in the source file. What value is given by the interpreter to __name__ is determined by the manner in which it is loaded.

If we run the source file directly using the Python interpreter, e.g.:

$ python3 inflammation-analysis.py

then the interpreter will assign the hard-coded string "__main__" to the __name__ variable:

__name__ = "__main__"
...
# rest of your code

However, if your source file is imported by another Python script, e.g:

import inflammation-analysis

then the interpreter will assign the name "inflammation-analysis" from the import statement to the __name__ variable:

__name__ = "inflammation-analysis"
...
# rest of your code

Because of this behaviour of the interpreter, we can put any code that should only be executed when running the script directly within the if __name__ == "__main__": structure, allowing the rest of the code within the script to be safely imported by another script if we so wish.

While it may not seem very useful to have your controller script importable by another script, there are a number of situations in which you would want to do this:

Passing Command-line Options to Controller

The standard Python library for reading command line arguments passed to a script is argparse. This module reads arguments passed by the system, and enables the automatic generation of help and usage messages. These include, as we saw at the start of this course, the generation of helpful error messages when users give the program invalid arguments.

The basic usage of argparse can be seen in the inflammation-analysis.py script. First we import the library:

import argparse

We then initialise the argument parser class, passing an (optional) description of the program:

parser = argparse.ArgumentParser(
    description='A basic patient inflammation data management system')

Once the parser has been initialised we can add the arguments that we want argparse to look out for. In our basic case, we want only the names of the file(s) to process:

parser.add_argument(
    'infiles',
    nargs='+',
    help='Input CSV(s) containing inflammation series for each patient')

Here we have defined what the argument will be called ('infiles') when it is read in; the number of arguments to be expected (nargs='+', where '+' indicates that there should be 1 or more arguments passed); and a help string for the user (help='Input CSV(s) containing inflammation series for each patient').

You can add as many arguments as you wish, and these can be either mandatory (as the one above) or optional. Most of the complexity in using argparse is in adding the correct argument options, and we will explain how to do this in more detail below.

Finally we parse the arguments passed to the script using:

args = parser.parse_args()

This returns an object (that we have called args) containing all the arguments requested. These can be accessed using the names that we have defined for each argument, e.g. args.infiles would return the filenames that have been input.

The help for the script can be accessed using the -h or --help optional argument (which argparse includes by default):

$ python3 inflammation-analysis.py --help
usage: inflammation-analysis.py [-h] infiles [infiles ...]

A basic patient inflammation data management system

positional arguments:
  infiles     Input CSV(s) containing inflammation series for each patient

optional arguments:
  -h, --help  show this help message and exit

The help page starts with the command line usage, illustrating what inputs can be given (any within [] brackets are optional). It then lists the positional and optional arguments, giving as detailed a description of each as you have added to the add_argument() command. Positional arguments are arguments that need to be included in the proper position or order when calling the script.

Note that optional arguments are indicated by - or --, followed by the argument name. Positional arguments are simply inferred by their position. It is possible to have multiple positional arguments, but usually this is only practical where all (or all but one) positional arguments contains a clearly defined number of elements. If more than one option can have an indeterminate number of entries, then it is better to create them as ‘optional’ arguments. These can be made a required input though, by setting required = True within the add_argument() command.

Positional and Optional Argument Order

The usage section of the help page above shows the optional arguments going before the positional arguments. This is the customary way to present options, but is not mandatory. Instead there are two rules which must be followed for these arguments:

  1. Positional and optional arguments must each be given all together, and not inter-mixed. For example, the order can be either “optional, positional” or “positional, optional”, but not “optional, positional, optional”.
  2. Positional arguments must be given in the order that they are shown in the usage section of the help page.

Additional Reading Material & References

Now that we have covered and revisited software architecture and different programming paradigms and how we can integrate them into our architecture, there are two optional extra episodes which you may find interesting.

Both episodes cover the persistence layer of software architectures and methods of persistently storing data, but take different approaches. The episode on persistence with JSON covers some more advanced concepts in Object Oriented Programming, while the episode on databases starts to build towards a true multilayer architecture, which would allow our software to handle much larger quantities of data.

Towards Collaborative Software Development

Having looked at some aspects of software design and architecture, we are now circling back to implementing our software design and developing our software to satisfy the requirements collaboratively in a team. At an intermediate level of software development, there is a wealth of practices that could be used, and applying suitable design and coding practices is what separates an intermediate developer from someone who has just started coding. The key for an intermediate developer is to balance these concerns for each software project appropriately, and employ design and development practices enough so that progress can be made.

One practice that should always be considered, and has been shown to be very effective in team-based software development, is that of code review. Code reviews help to ensure the ‘good’ coding standards are achieved and maintained within a team by having multiple people have a look and comment on key code changes to see how they fit within the codebase. Such reviews check the correctness of the new code, test coverage, functionality changes, and confirm that they follow the coding guides and best practices. Let us have a look at some code review techniques available to us.

Key Points

  • Sometimes new, contributed code needs refactoring for it to fit within an existing codebase.

  • Try to leave the code in a better state that you found it.


Section 4: Collaborative Software Development for Reuse

Overview

Teaching: 5 min
Exercises: 0 min
Questions
  • What practices help us develop software collaboratively that will make it easier for us and others to further develop and reuse it?

Objectives
  • Understand the code review process and employ it to improve the quality of code.

  • Understand the process and best practices for preparing Python code for reuse by others.

When changes - particularly big changes - are made to a codebase, how can we as a team ensure that these changes are well considered and represent good solutions? And how can we increase the overall knowledge of a codebase across a team? Sometimes project goals and time pressures take precedence and producing maintainable, reusable code is not given the time it deserves. So, when a change or a new feature is needed - often the shortest route to making it work is taken as opposed to a more well thought-out solution. For this reason, it is important not to write the code alone and in isolation and use other team members to verify each other’s code and measure our coding standards against. This process of having multiple team members comment on key code changes is called code review - this is one of the most important practices of collaborative software development that helps ensure the ‘good’ coding standards are achieved and maintained within a team, as well as increasing knowledge about the codebase across the team. We will thus look at the benefits of reviewing code, in particular, the value of this type of activity within a team, and how this can fit within various ways of team working. We will see how GitHub can support code review activities via pull requests, and how we can do these ourselves making use of best practices.

After that, we will look at some general principles of software maintainability and the benefits that writing maintainable code can give you. There will also be some practice at identifying problems with existing code, and some general, established practices you can apply when writing new code or to the code you have already written. We will also look at how we can package software for release and distribution, using Poetry to manage our Python dependencies and produce a code package we can use with a Python package indexing service to illustrate these principles.

Software design and architecture

Key Points

  • Agreeing on a set of best practices within a software development team will help to improve your software’s understandability, extensibility, testability, reusability and overall sustainability.


Developing Software In a Team: Code Review

Overview

Teaching: 30 min
Exercises: 30 min
Questions
  • How do we develop software in a team?

  • What is code review and how it can improve the quality of code?

Objectives
  • Describe commonly used code review techniques.

  • Understand how to do a pull request via GitHub to engage in code review with a team and contribute to a shared code repository.

Introduction

So far in this course we’ve focused on learning software design and (some) technical practices, tools and infrastructure that help the development of software in a team environment, but in an individual setting. Despite developing tests to check our code - no one else from the team had a look at our code before we merged it into the main development stream. Software is often designed and built as part of a team, so in this episode we will be looking at how to manage the process of team software development and improve our code by engaging in code review process with other team members.

Collaborative Code Development Models

The way a team provides contributions to a shared codebase depends on the type of development model used in a project. Two commonly used models are described below.

Fork and Pull Model

In the fork and pull model, anyone can fork an existing repository (to create their copy of the project linked to the source) and push changes to their personal fork. A contributor can work independently on their own fork as they do not need permissions on the source repository to push modifications to a fork they own. The changes from contributors can then be pulled into the source repository by the project maintainer on request and after a code review process. This model is popular with open source projects as it reduces the start up costs for new contributors and allows them to work independently without upfront coordination with source project maintainers. So, for example, you may use this model when you are an external collaborator on a project rather than a core team member.

Shared Repository Model

In the shared repository model, collaborators are granted push access to a single shared code repository. By default, collaborators have write access to the main branch. However, it is best practice to create feature branches for new developments and protect the main branch from direct and unreviewed commits to keep it stable - see GitHub’s documentation on how to do this. While this model of collaboration requires more upfront coordination, it makes it easier to share each other’s work. It works well for more stable teams and is more prevalent with teams and organisations collaborating on private projects.

Code Review

Regardless of the collaborative code development model your team uses, code review is one of the widely accepted best practices for software development in teams and something you should adopt in your development process too.

Code review is a software quality assurance practice where one or several people from the team (different from the code’s author) check the software by viewing parts of its source code at the point when the code changes. Code review is very useful for all parties involved - someone checks your design or code for errors and gets to learn from your solution; having to explain code to someone else clarifies your rationale and design decisions in your mind too.

Code review is universally applicable throughout the software development cycle - from design to development to maintenance. According to Michael Fagan, the author of the code inspection technique, rigorous inspections can remove 60-90% of errors from the code even before the first tests are run (Fagan, 1976). Furthermore, according to Fagan, the cost to remedy a defect in the early (design) stage is 10 to 100 times less compared to fixing the same defect in the development and maintenance stages, respectively. Since the cost of bug fixes grows in orders of magnitude throughout the software lifecycle, it is far more efficient to find and fix defects as close as possible to the point where they were introduced.

There are several code review techniques with various degree of formality and the use of a technical infrastructure, including:

You can read more about these techniques in the “Five Types of Review” section of the “Best Kept Secrets of Peer Code Review” eBook.

It is worth trying multiple code review techniques to see what works best for you and your team. We will have a look at the tool-assisted code review process, which is likely to be the most effective and efficient. We will use GitHub’s built-in code review tool - pull requests, or PRs. It is a lightweight tool, included with GitHub’s core service for free and has gained popularity within the software development community in recent years.

Code Reviews via GitHub’s Pull Requests

Pull requests are fundamental to how teams review and improve code on GitHub (and similar code sharing platforms) - they let you tell others about changes you have pushed to a branch in a repository on GitHub and that your code is ready for review. Once a pull request is opened, you can discuss and review the potential changes with others on the team and add follow-up commits based on the feedback before your changes are merged into the development branch. The name ‘pull request’ suggests you are requesting the codebase moderators to pull your changes into the codebase.

Such changes are normally done on a feature branch, to ensure that they are separate and self-contained, that the main branch only contains “production-ready” work, and that the development branch contains code that has already been extensively tested. You create a branch for your work based on one of the existing branches (typically the development branch but can be any other branch), do some commits on that branch, and, once you are ready to merge your changes, create a pull request to bring the changes back to the branch that you started from. In this context, the branch from which you branched off to do your work and where the changes should be applied back to is called the base branch, while the feature branch that contains changes you would like to be applied is the compare branch.

How you create your feature branches and open pull requests in GitHub will depend on your collaborative code development model:

In both development models, it is recommended to create a feature branch for your work and the subsequent pull request, even though you can submit pull requests from any branch or commit. This is because, with a feature branch, you can push follow-up commits as a response to feedback and update your proposed changes within a self-contained bundle. The only difference in creating a pull request between the two models is how you create the feature branch. In either model, once you are ready to merge your changes in - you will need to specify the base branch and the compare branch.

Let us see this in action - you are going to act as a reviewer on a proposed change to the codebase contributed by a fictional colleague on one of your fellow learner’s repository. One of your fellow learners will review the proposed changes on your repository. Once the review is done, you will then take on the role of the fictional colleague and respond to the review on your repository. If you are completing the course by yourself, you can add the review on the proposed changes in your own repository and then respond to your own review comments by fixing the proposed code. This is actually a very sensible thing to do in general - looking at your own code in a review window will allow you to spot mistakes you have not seen before.

Here is an outline of the process of a tool assisted code review.

Code review process sequence

Recall solution requirement SR1.1.1 from an earlier episode. A fictional colleague has implemented it according to the specification and pushed it to a branch feature-std-dev of our software repository. You will turn this branch into a pull request on your repository. You will then engage in code review for the change (acting as a code reviewer) on a fellow learner’s repository. Once complete, you will respond to the comments from another team member on the pull request on your repository (acting as a code author).

Raising a Pull Request

  1. Head over to your software repository in GitHub.
  2. Navigate to the pull requests tab.
  3. Create a new pull request by clicking the green New pull request button. GitHub pull requests tab
  4. Select the base and the compare branch - main and feature-std-dev, respectively. Recall that the base branch is where you want your changes to be merged and the compare branch contains the changes.
  5. Click Create pull request button to open the request. Creating a new pull request.
  6. Add a comment describing the nature of the changes, and then submit the pull request by clicking the Create pull request button (in the new window). Submitting a pull request.
  7. At this point, the code review process is initiated.

We will now discuss what to look for in a code review, before practising it on this fictional change.

Reviewing a Pull Request

Once a review has been raised it is over to the reviewer to review the code and submit feedback.

Reviewing code effectively takes practice. However, here is some guidance on what you should be looking for when reviewing a piece of code.

Things to Look for in a Code Review

Start by understanding what the code should do, by reading the specification/user requirements, the pull request description or talking to the developer if need be. In this case, understand what SR1.1.1 means.

Once you are happy, start reading the code (skip the test code for now - we will come back to it later). you are going to be assessing the code in the following key areas.

Is the proposed code readable?
Is the proposed code a minimal change?
Is the structure of the code clear?
Is there an appropriate and up-to-date documentation for the proposed code?

Things Not to Look for in a Code Review

The overriding priority for reviewing code should be making sure progress is being made - do not let perfect be the enemy of the good here. According to “Best Kept Secrets of Peer Code Review” (Cohen, 2006) the first hour of reviewing code is the most effective, with diminishing returns after that.

To that end, here are a few things you should not be trying to spot when reviewing:

Adding a review comment

Here, we are outlining the process of adding a review to a pull request. There is doing to be an exercise next for you to practice it.

  1. Your fellow learner should add you as a collaborator on their repository to begin with. They can do that from the Settings tab of the repository, then Collaborators and teams tab on the left, then clicking the Add people button. Once they find you by your GitHub name - you will receive an invitation via email to join the repository as a collaborator. You will have to do the same for the collaborator doing the review on your repository.

    Code Review from External Contributors

    You do not have to be a collaborator on a public repository to do code reviews so this step is not strictly necessary. We are still asking you to do it now as we will get you working in teams for the rest of the course so it may make sense to start setting up your collaborators now.

    Adding a collaborator in GitHub

  2. Locate up the pull request from the GitHub’s Pull Requests tab on the home page of your fellow learner’s software repository, then head to the Files changed tab on the pull request. The files changed tab of a pull request
  3. When you find a line that you want to add a comment to, click on the blue plus (+) button next to the line. This will bring up a “Write” box to add your comment. Adding a review comment to a pull request You can also add comments referring to multiple lines by clicking the plus and dragging down over the relevant lines. If you want to make a concrete suggestion or a change to the code directly, such as renaming a variable, you can click the Add a suggestion button (which looks like a document with a plus and a minus in it). This will populate the comment with the existing code, and you can edit it to be what you think the code should be.

    Note: you can only make direct code suggestions if you are a collaborator on a repository. Otherwise, you can add comments only. Adding a suggestion to a pull request GitHub will then provide a button for the code author to apply your changes directly.

  4. Write your comment in the box, and then click Start review. This will save your comment, but not publish it yet. You can use Add single comment button to immediately post a comment. However, it is best to batch the comments into a single review, so that the author knows when you have finished adding comments (and avoid spamming their email with notifications).
  5. Continue adding comments in this way, if you have any, using the Add review comment button.

Effective Review Comments

  • Make sure your review comments are specific and actionable.
  • Try to be as specific as you can - instead of “this code is unclear” instead say “I do not understand what values this variable can hold”.
  • Make it clear in the comment if you want something to change as part of this pull request.
  • Ideally provide a concrete suggestion (e.g. a better variable name).

Exercise: Review Some Code

Pair up with a colleague from your group/team and go to the pull request your colleague created on their project repository. If there is an odd number of people in your group, three people can go in a round robin fashion (the first team member will review the pull request on the second member’s repository and will receive comments on the pull request on their repository from the third team member, and so on). If you are going through the material on your own and do not have a collaborator, you can be the reviewer on the pull requests on your own repository.

Review the code, looking for the kinds of problems that we have just discussed. There are examples of all four main problem areas in the pull request, so try to make at least one suggestion for each area.

Add your review comments but do not submit your review just yet.

Solution

Here are some of the things you might have found were wrong with the code.

Is the proposed code readable?
  • Function name s_dev is not the best or self-explanatory - it uses an uncommon abbreviation and does not make it clear immediately what the function does without reading the code. A better name is standard_deviation.
  • Not clear what variable number contains - better option is a business-logic name like mean or mean_of_data.
Is the proposed code a minimal change?
  • Could have used np.std to compute standard deviation of data without having to reimplement from scratch.
Is the structure of the proposed code clear?
  • Have the function return the data, rather than having the graph name (a view layer consideration) leak into the model code.
Is there an appropriate and up-to-date documentation for the proposed code?
  • The documentation say it returns the standard deviation, but it actually returns a dictionary containing the standard deviation.

Making Sure Code is Valid

The other key thing you want to verify in a code review is that the code is correct and well tested. One approach to do this is to build up a list of tests you would expect to see (and the results you would expect them to have), and then verify that all these tests are present and correct.

Start by listing out all the tests you would expect to see based on the specification. As you are going through the code, add to this list any other tests you can think of, making sure to add tests for:

Once you have the list, go through the tests in the pull request. Inspect them closely to make sure they test everything you expect them to.

Submitting a Review

Once you have a list of tests you want the author to add, it is time to submit your review.

  1. To do this, click the Finish your review button at the top of the Files changed tab. Using the finishing your review dialog In the comment box, you can add any other comments that are not associated with a specific line. For example, you can put the list of tests that you want to see added here.
  2. Next you will need select to one of Comment, Approve or Request changes. Using the finishing your review dialog
    • Use Approve if you would be happy for the code to go in with no further changes.
    • Use Request changes to communicate to the author that they should address your comments before you will approve it.
    • Use Comment if you do not want to express a decision on whether the code should be accepted. For example, if you have been asked to look at a specific part of the code, or if you are part way through a review, but wanted to share some comments sooner.
  3. Finally, you can press Submit review button. This will publish all the comments you have made as part of the review and let the author know that the review is complete and it is their turn for action.

Exercise: Review the Code for Suitable Tests

Remind yourself of the specification for SR1.1.1 and write a list of tests you would expect to see for this feature. Review the code again and expand this list to include any other edge cases the code makes you think of. Go through the tests in the pull request and work out which tests are present.

Once you are happy, you can submit your review. Select Request changes to let the author know they need to address your comments.

Solution

Your list might include the following:

  1. Standard deviation for one patient with multiple observations.
  2. Standard deviation for two patients.
  3. Graph includes a standard deviation graph.
  4. Standard deviation function should raise an error if given empty data.
  5. Computing standard deviation where deviation is different from variance.
  6. Standard deviation function should give correct result given negative inputs.
  7. Function should work with numpy arrays.

Looking at the tests in the PR, you might be content that tests for 1, 4 and 7 are present so you would request changes to add tests 2, 3, 5 and 6.

In looking at the tests, you may have noticed that the test for numpy arrays is currently spuriously passing as it does not use the return value from the function in the assert.

You may have spotted that the function actually computes the variance rather than the standard deviation. Perhaps that made you think to add the test for some data where the variance and standard deviation are different. In more complex examples, it is often easier to spot code that looks like it could be wrong and think of a test that will exercise it. This saves embarrassment if the code turns out to be right, means you have the missing test written if it is wrong, and is often quicker than trying to execute the code in your head to find out if it is correct.

Responding to Review Comments

Once you receive comments on your code, a few different scenarios can occur:

  1. You understand and agree with the reviewer’s comments. In this scenario, you should make the requested change to your branch (or accept the suggested change by the reviewer) and commit it. It might be helpful to add a thumbs up reaction to the comment, so the reviewer knows you have addressed it. Even better, leave a comment such as “Fixed via #commit_number” with a link to your commit that implemented the change. Responding to a review comment with an emoji Responding to a review comment with a link to commit
  2. It is not completely clear what the requested change should be - in this scenario you should reply to such a review to ask for clarification.
  3. You disagree with the reviewer - in this scenario, it might be best to talk to them in person. Discussions that happen on code reviews can often feel quite adversarial - discussing what the best solution is in person can help defuse this.

Exercise: Responding to Comments

Look at the pull request that you created on your repository. By now you should have someone else’s comments on it. For each comment, either reply explaining why you do not think the change is necessary or make the change and push a commit fixing it. Reply to each of the comments indicating you have addressed it.

At the same time, people will be addressing your comments on the pull request in their repository. If you are satisfied that your comment has been suitably addressed, you can mark it as resolved. Once all comments have been addressed, you can approve the pull request by submitting a new review and this time selecting Approve. This tells the author you are happy for them to merge the pull request.

Approving a Pull Request

  1. Once the reviewer approves the changes, the person whose repository it is can merge the changes onto the base branch. Typically, it is the code author’s responsibility to merge but this may differ from team to team. In our case, you will merge the changes on the PR on your repository. Merging a pull request in GitHub
  2. Delete the merged branch to reduce the clutter in the repository.

Writing Easy-To-Review Code

There are a few things you can do to make it as easy as possible for the reviewer to review your code:

The most important thing to keep in mind is how long your pull request is. Smaller changes that just make one small improvement will be much quicker and easier to review. There is no golden rule, but studies into code review show that you should not review more than 400 lines of code at a time, so this is a reasonable target to aim for. You can refer to some studies and Google recommendations as to what a “large pull request” is but be aware that it is not an exact science.

Try to keep each commit (within your pull request) to be making one logical change. This can especially help with larger pull requests that would otherwise be harder to review. In particular, if you have reformatted, refactored and changed the behavior of the code make sure each of these is in a separate commit (i.e reformat the code, commit, refactor the code, commit, alter the behavior of the code, commit).

Make sure you write a clear description of the content and purpose of the change. This should be provided as the pull request description. This should provide the context needed to read the code.

It is also a good idea to review your code yourself, before requesting a review. In doing this you will spot the more obvious issues with your code, allowing your reviewer to focus on the things you cannot spot.

Writing Effective Review Comments

Code is written by humans (mostly!), and code review is a form of communication. As such, empathy is important for effective reviewing.

When reviewing code, it can be sometimes frustrating when code is confusing, particularly as it is implemented differently to how you would have done it. However, it is important as a reviewer to be compassionate to the person whose code you are reviewing. Specifically:

Defining a Review Process For Your Team

To be effective, code review needs to be a process that is followed by everyone in the team developing the code. Everyone should believe that the process provides value. One way to foster this is to agree on the review process as a team and consider, e.g.:

You could also consider using pull request states in GitHub:

Once you have agreed on a review process, you should monitor (either formally or informally) how well it is working.

It is important that reviews are processed quickly, to avoid costly context switching for the code author moving on to work on other things and coming back to their PR. Try and set the targets for when you would want the first review submitted on a PR and the PR merged, based on how your team works. If you are regularly missing your targets, then you should review your process to identify where things are getting stuck and work out what you can do to move things along.

Optional Exercise: Code Review in Your Own Working Environment

In this episode we have looked at some best practices for code review and practiced tool assisted code review with GitHub’s pull requests.

Now think about how you and your collaborators typically develop code. What benefits do you see for introducing a code review process in your work environment? How might you institute code review practices within your environment? Write down a process for a tool assisted code review for your team, answering the questions above.

Once complete, discuss with the rest of the class what are the advantages of a code review process and what challenges you think you would face in implementing this process in your own working environment.

Solution

The purposes of code review include:

  • improving internal code readability, understandability, quality and maintainability,
  • checking for coding standards compliance, code uniformity and consistency,
  • checking for test coverage and detecting bugs and code defects early,
  • detecting performance problems and identifying code optimisation points,
  • finding alternative/better solutions,
  • sharing knowledge of the code, and of coding standards and expectations of quality.

Finally, it helps increase the sense of collective code ownership and responsibility, which in turn helps increase the “bus factor” and reduce the risk resulting from information and capabilities being held by a single person “responsible” for a certain part of the codebase and not being shared among team members.

Challenges you might face introducing a code review process:

  • complaints that it is a waste of time,
  • creating a negative atmosphere where people are overly critical of each others work, or are defensive of their own,
  • perfectionism leading to slower development,
  • people not sharing code to avoid the review process.

Make sure to monitor whether these are happening, and adjust the process accordingly.

Further Reading

There are multiple perspectives to a code review process - from general practices to technical details relating to different roles involved in the process. We have discussed the main points, but do check these useful code review blogs from Swarmia and Smartbear.

The key thing is to try it, and iterate the process until it works well for your team.

Key Points

  • Code review is a team software quality assurance practice where team members look at parts of the codebase in order to improve their code’s readability, understandability, quality and maintainability.

  • It is important to agree on a set of best practices and establish a code review process in a team to help to sustain a good, stable and maintainable code for many years.


Preparing Software for Reuse and Release

Overview

Teaching: 35 min
Exercises: 15 min
Questions
  • What can we do to make our programs reusable by others?

  • How should we document and license our code?

Objectives
  • Describe the different levels of software reusability

  • Explain why documentation is important

  • Describe the minimum components of software documentation to aid reuse

  • Create a repository README file to guide others to successfully reuse a program

  • Understand other documentation components and where they are useful

  • Describe the basic types of open source software licence

  • Explain the importance of conforming to data policy and regulation

  • Prioritise and work on improvements for release as a team

Introduction

In previous episodes we have looked at skills, practices, and tools to help us design and develop software in a collaborative environment. In this lesson we will be looking at a critical piece of the development puzzle that builds on what we have learnt so far - sharing our software with others.

The Levels of Software Reusability - Good Practice Revisited

Let us begin by taking a closer look at software reusability and what we want from it.

Firstly, whilst we want to ensure our software is reusable by others, as well as ourselves, we should be clear what we mean by ‘reusable’. There are a number of definitions out there, but a helpful one written by Benureau and Rougler in 2017 offers the following levels by which software can be characterised:

  1. Re-runnable: the code is simply executable and can be run again (but there are no guarantees beyond that)
  2. Repeatable: the software will produce the same result more than once
  3. Reproducible: published research results generated from the same version of the software can be generated again from the same input data
  4. Reusable: easy to use, understand, and modify
  5. Replicable: the software can act as an available reference for any ambiguity in the algorithmic descriptions made in the published article. That is, a new implementation can be created from the descriptions in the article that provide the same results as the original implementation, and that the original - or reference - implementation, can be used to clarify any ambiguity in those descriptions for the purposes of reimplementation

Later levels imply the earlier ones. So what should we aim for? As researchers who develop software - or developers who write research software - we should be aiming for at least the fourth one: reusability. Reproducibility is required if we are to successfully claim that what we are doing when we write software fits within acceptable scientific practice, but it is also crucial that we can write software that can be understood and ideally modified by others. If others are unable to verify that a piece of software follows published algorithms, how can they be certain it is producing correct results? Where ‘others’, of course, can include a future version of ourselves.

Documenting Code to Improve Reusability

Reproducibility is a cornerstone of science, and scientists who work in many disciplines are expected to document the processes by which they have conducted their research so it can be reproduced by others. In medicinal, pharmacological, and similar research fields for example, researchers use logbooks which are then used to write up protocols and methods for publication.

Many things we have covered so far contribute directly to making our software reproducible - and indeed reusable - by others. A key part of this we will cover now is software documentation, which is ironically very often given short shrift in academia. This is often the case even in fields where the documentation and publication of research method is otherwise taken very seriously.

A few reasons for this are that writing documentation is often considered:

A very useful form of documentation for understanding our code is code commenting, and is most effective when used to explain complex interfaces or behaviour, or the reasoning behind why something is coded a certain way. But code comments only go so far.

Whilst it is certainly arguable that writing documentation is not as exciting as writing code, it does not have to be expensive and brings many benefits. In addition to enabling general reproducibility by others, documentation…

In the next section we will see that writing a sensible minimum set of documentation in a single document does not have to be expensive, and can greatly aid reproducibility.

Writing a README

A README file is the first piece of documentation (perhaps other than publications that refer to it) that people should read to acquaint themselves with the software. It concisely explains what the software is about and what it is for, and covers the steps necessary to obtain and install the software and use it to accomplish basic tasks. Think of it not as a comprehensive reference of all functionality, but more a short tutorial with links to further information - hence it should contain brief explanations and be focused on instructional steps.

Our repository already has a README that describes the purpose of the repository for this workshop, but let us replace it with a new one that describes the software itself. First let us delete the old one:

$ rm README.md

In the root of your repository create a replacement README.md file. The .md indicates this is a Markdown file, a lightweight markup language which is basically a text file with some extra syntax to provide ways of formatting them. A big advantage of them is that they can be read as plain-text files or as source files for rendering them with formatting structures, and are very quick to write. GitHub provides a very useful guide to writing Markdown for its repositories.

Let us start writing README.md using a text editor of your choice and add the following line.

# Inflam

So here, we are giving our software a name. Ideally something unique, short, snappy, and perhaps to some degree an indicator of what it does. We would ideally rename the repository to reflect the new name, but let us leave that for now. In Markdown, the # designates a heading, two ## are used for a subheading, and so on. The Software Sustainability Institute’s guide on naming projects and products provides some helpful pointers.

We should also add a short description underneath the title.

# Inflam
Inflam is a data management system written in Python that manages trial data used in clinical inflammation studies.

To give readers an idea of the software’s capabilities, let us add some key features next:

# Inflam
Inflam is a data management system written in Python that manages trial data used in clinical inflammation studies.

## Main features
Here are some key features of Inflam:

- Provide basic statistical analyses over clinical trial data
- Ability to work on trial data in Comma-Separated Value (CSV) format
- Generate plots of trial data
- Analytical functions and views can be easily extended based on its Model-View-Controller architecture

As well as knowing what the software aims to do and its key features, it is very important to specify what other software and related dependencies are needed to use the software (typically called dependencies or prerequisites):

# Inflam
Inflam is a data management system written in Python that manages trial data used in clinical inflammation studies.

## Main features
Here are some key features of Inflam:

- Provide basic statistical analyses over clinical trial data
- Ability to work on trial data in Comma-Separated Value (CSV) format
- Generate plots of trial data
- Analytical functions and views can be easily extended based on its Model-View-Controller architecture

## Prerequisites
Inflam requires the following Python packages:

- [NumPy](https://www.numpy.org/) - makes use of NumPy's statistical functions
- [Matplotlib](https://matplotlib.org/stable/index.html) - uses Matplotlib to generate statistical plots

The following optional packages are required to run Inflam's unit tests:

- [pytest](https://docs.pytest.org/en/stable/) - Inflam's unit tests are written using pytest
- [pytest-cov](https://pypi.org/project/pytest-cov/) - Adds test coverage stats to unit testing

Here we are making use of Markdown links, with some text describing the link within [] followed by the link itself within ().

One really neat feature - and a common practice - of using many CI infrastructures is that we can include the status of running recent tests within our README file. Just below the # Inflam title on our README.md file, add the following (replacing <your_github_username> with your own:

# Inflam
![Continuous Integration build in GitHub Actions](https://github.com/<your_github_username>/python-intermediate-inflammation/actions/workflows/main.yml/badge.svg?branch=main)
...

This will embed a badge (icon) at the top of our page that reflects the most recent GitHub Actions build status of your software repository, essentially showing whether the tests that were run when the last change was made to the main branch succeeded or failed.

That’s got us started with documenting our code, but there are other aspects we should also cover:

For more verbose sections, there are usually just highlights in the README with links to further information, which may be held within other Markdown files within the repository or elsewhere.

We will finish these off later. See Matias Singer’s curated list of awesome READMEs for inspiration.

Other Documentation

There are many different types of other documentation you should also consider writing and making available that’s beyond the scope of this course. The key is to consider which audiences you need to write for, e.g. end users, developers, maintainers, etc., and what they need from the documentation. There is a Software Sustainability Institute blog post on best practices for research software documentation that helpfully covers the kinds of documentation to consider and other effective ways to convey the same information.

One that you should always consider is technical documentation. This typically aims to help other developers understand your code sufficiently well to make their own changes to it, including external developers, other members in your team and a future version of yourself too. This may include documentation that covers the software’s architecture, including its different components and how they fit together, API (Application Programming Interface) documentation that describes the interface points designed into your software for other developers to use, e.g. for a software library, or technical tutorials/’HOW TOs’ to accomplish developer-oriented tasks.

Choosing an Open Source Licence

Software licensing is a whole topic in itself, so we’ll just summarise here. Your institution’s Intellectual Property (IP) team will be able to offer specific guidance that fits the way your institution thinks about software.

In IP law, software is considered a creative work of literature, so any code you write automatically has copyright protection applied. This copyright will usually belong to the institution that employs you, but this may be different for PhD students. If you need to check, this should be included in your employment/studentship contract or talk to your university’s IP team.

Since software is automatically under copyright, without a licence no one may:

Fundamentally there are two kinds of licence, Open Source licences and Proprietary licences, which serve slightly different purposes:

Within the open source licences, there are two categories, copyleft and permissive:

Which of these types of licence you prefer is up to you and those you develop code with. If you want more information, or help choosing a licence, the Choose An Open-Source Licence or tl;dr Legal sites can help.

Exercise: Preparing for Release

In a (hopefully) highly unlikely and thoroughly unrecommended scenario, your project leader has informed you of the need to release your software within the next half hour, so it can be assessed for use by another team. You’ll need to consider finishing the README, choosing a licence, and fixing any remaining problems you are aware of in your codebase. Ensure you prioritise and work on the most pressing issues first!

Merging into main

Once you have done these updates, commit your changes, and if you are doing this work on a feature branch also ensure you merge it into develop, e.g.:

$ git switch develop
$ git merge my-feature-branch

Finally, once we have fully tested our software and are confident it works as expected on develop, we can merge our develop branch into main:

$ git switch main
$ git merge develop
$ git push origin main

The software on your main branch is now ready for release.

Tagging a Release in GitHub

There are many ways in which Git and GitHub can help us make a software release from our code. One of these is via tagging, where we attach a human-readable label to a specific commit. Let us see what tags we currently have in our repository:

$ git tag

Since we have not tagged any commits yet, there is unsurprisingly no output. We can create a new tag on the last commit in our main branch by doing:

$ git tag -a v1.0.0 -m "Version 1.0.0"

So we can now do:

$ git tag
v.1.0.0

And also, for more information:

$ git show v1.0.0

You should see something like this:

tag v1.0.0
Tagger: <Name> <email>
Date:   Fri Dec 10 10:22:36 2021 +0000

Version 1.0.0

commit 2df4bfcbfc1429c12f92cecba751fb2d7c1a4e28 (HEAD -> main, tag: v1.0.0, origin/main, origin/develop, origin/HEAD, develop)
Author: <Name> <email>
Date:   Fri Dec 10 10:21:24 2021 +0000

	Finalising README.

diff --git a/README.md b/README.md
index 4818abb..5b8e7fd 100644
--- a/README.md
+++ b/README.md
@@ -22,4 +22,33 @@ Flimflam requires the following Python packages:
 The following optional packages are required to run Flimflam's unit tests:

 - [pytest](https://docs.pytest.org/en/stable/) - Flimflam's unit tests are written using pytest
-- [pytest-cov](https://pypi.org/project/pytest-cov/) - Adds test coverage stats to unit testing
\ No newline at end of file
+- [pytest-cov](https://pypi.org/project/pytest-cov/) - Adds test coverage stats to unit testing
+
+## Installation
+- Clone the repo ``git clone repo``
+- Check everything runs by running ``python -m pytest`` in the root directory
+- Hurray 😊
+
+## Contributing
+- Create an issue [here](https://github.com/Onoddil/python-intermediate-inflammation/issues)
+  - What works, what does not? You tell me
+- Randomly edit some code and see if it improves things, then submit a [pull request](https://github.com/Onoddil/python-intermediate-inflammation/pulls)
+- Just yell at me while I edit the code, pair programmer style!
+
+## Getting Help
+- Nice try
+
+## Credits
+- Directed by Michael Bay
+
+## Citation
+Please cite [J. F. W. Herschel, 1829, MmRAS, 3, 177](https://ui.adsabs.harvard.edu/abs/1829MmRAS...3..177H/abstract) if you used this work in your day-to-day life.
+Please cite [C. Herschel, 1787, RSPT, 77, 1](https://ui.adsabs.harvard.edu/abs/1787RSPT...77....1H/abstract) if you actually use this for scientific work.
+
+## License
+This source code is protected under international copyright law.  All rights
+reserved and protected by the copyright holders.
+This file is confidential and only available to authorized individuals with the
+permission of the copyright holders.  If you encounter this file and do not have
+permission, please contact the copyright holders and delete this file.
\ No newline at end of file

So now we have added a tag, we need this reflected in our Github repository. You can push this tag to your remote by doing:

$ git push origin v1.0.0

What is a Version Number Anyway?

Software version numbers are everywhere, and there are many different ways to do it. A popular one to consider is Semantic Versioning, where a given version number uses the format MAJOR.MINOR.PATCH. You increment the:

  • MAJOR version when you make incompatible API changes
  • MINOR version when you add functionality in a backwards compatible manner
  • PATCH version when you make backwards compatible bug fixes

You can also add a hyphen followed by characters to denote a pre-release version, e.g. 1.0.0-alpha1 (first alpha release) or 1.2.3-beta4 (fourth beta release)

We can now use the more memorable tag to refer to this specific commit. Plus, once we have pushed this back up to GitHub, it appears as a specific release within our code repository which can be downloaded in compressed .zip or .tar.gz formats. Note that these downloads just contain the state of the repository at that commit, and not its entire history.

Using features like tagging allows us to highlight commits that are particularly important, which is very useful for reproducibility purposes. We can (and should) refer to specific commits for software in academic papers that make use of results from software, but tagging with a specific version number makes that just a little bit easier for humans.

Conforming to Data Policy and Regulation

We may also wish to make data available to either be used with the software or as generated results. This may be via GitHub or some other means. An important aspect to remember with sharing data on such systems is that they may reside in other countries, and we must be careful depending on the nature of the data.

We need to ensure that we are still conforming to the relevant policies and guidelines regarding how we manage research data, which may include funding council, institutional, national, and even international policies and laws. Within Europe, for example, there is the need to conform to things like GDPR. it is a very good idea to make yourself aware of these aspects.

Key Points

  • The reuse battle is won before it is fought. Select and use good practices consistently throughout development and not just at the end.


Packaging Code for Release and Distribution

Overview

Teaching: 0 min
Exercises: 20 min
Questions
  • How do we prepare our code for sharing as a Python package?

  • How do we release our project for other people to install and reuse?

Objectives
  • Describe the steps necessary for sharing Python code as installable packages.

  • Use Poetry to prepare an installable package.

  • Explain the differences between runtime and development dependencies.

Why Package our Software?

We have now got our software ready to release - the last step is to package it up so that it can be distributed.

For very small pieces of software, for example a single source file, it may be appropriate to distribute to non-technical end-users as source code, but in most cases we want to bundle our application or library into a package. A package is typically a single file which contains within it our software and some metadata which allows it to be installed and used more simply - e.g. a list of dependencies. By distributing our code as a package, we reduce the complexity of fetching, installing and integrating it for the end-users.

In this session we will introduce one widely used method for building an installable package from our code. There are range of methods in common use, so it is likely you will also encounter projects which take different approaches.

There is some confusing terminology in this episode around the use of the term “package”. This term is used to refer to both:

Packaging our Software with Poetry

Installing Poetry

Because we have recommended GitBash if you are using Windows, we are going to install Poetry using a different method to the officially recommended one. If you are on MacOS or Linux, are comfortable with installing software at the command line and want to use Poetry to manage multiple projects, you may instead prefer to follow the official Poetry installation instructions.

We can install Poetry much like any other Python distributable package, using pip:

$ source venv/bin/activate
$ python3 -m pip install poetry

To test, we can ask where Poetry is installed:

$ which poetry
/home/alex/python-intermediate-inflammation/venv/bin/poetry

If you do not get similar output, make sure you have got the correct virtual environment activated.

Poetry can also handle virtual environments for us, so in order to behave similarly to how we used them previously, let us change the Poetry config to put them in the same directory as our project:

$ poetry config virtualenvs.in-project true

Setting up our Poetry Config

Poetry uses a pyproject.toml file to describe the build system and requirements of the distributable package. This file format was introduced to solve problems with bootstrapping packages (the processing we do to prepare to process something) using the older convention with setup.py files and to support a wider range of build tools. It is described in PEP 518 (Specifying Minimum Build System Requirements for Python Projects).

Make sure you are in the root directory of your software project and have activated your virtual environment, then we are ready to begin.

To create a pyproject.toml file for our code, we can use poetry init. This will guide us through the most important settings - for each prompt, we either enter our data or accept the default.

Displayed below are the questions you should see with the recommended responses to each question so try to follow these, although use your own contact details!

NB: When you get to the questions about defining our dependencies, answer no, so we can do this separately later.

$ poetry init
This command will guide you through creating your pyproject.toml config.

Package name [example]:  inflammation
Version [0.1.0]: 1.0.0
Description []:  Analyse patient inflammation data
Author [None, n to skip]: James Graham <J.Graham@software.ac.uk>
License []:  MIT
Compatible Python versions [^3.11]: ^3.11

Would you like to define your main dependencies interactively? (yes/no) [yes] no
Would you like to define your development dependencies interactively? (yes/no) [yes] no
Generated file

[tool.poetry]
name = "inflammation"
version = "1.0.0"
description = "Analyse patient inflammation data"
authors = ["James Graham <J.Graham@software.ac.uk>"]
license = "MIT"

[tool.poetry.dependencies]
python = "^3.11"

[tool.poetry.dev-dependencies]

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"


Do you confirm generation? (yes/no) [yes] yes

Note that we have called our package “inflammation” in the setup above, instead of “inflammation-analysis”. This is because Poetry will automatically find our code if the name of the distributable package matches the name of our module package. If we wanted our distributable package to have a different name, for example “inflammation-analysis”, we could do this by explicitly listing the module packages to bundle - see the Poetry docs on packages for how to do this.

Project Dependencies

Previously, we looked at using a requirements.txt file to define the dependencies of our software. Here, Poetry takes inspiration from package managers in other languages, particularly NPM (Node Package Manager), often used for JavaScript development.

Tools like Poetry and NPM understand that there are two different types of dependency: runtime dependencies and development dependencies. Runtime dependencies are those dependencies that need to be installed for our code to run, like NumPy. Development dependencies are dependencies which are an essential part of your development process for a project, but are not required to run it. Common examples of developments dependencies are linters and test frameworks, like pylint or pytest.

When we add a dependency using Poetry, Poetry will add it to the list of dependencies in the pyproject.toml file, add a reference to it in a new poetry.lock file, and automatically install the package into our virtual environment. If we do not yet have a virtual environment activated, Poetry will create it for us - using the name .venv, so it appears hidden unless we do ls -a. Because we have already activated a virtual environment, Poetry will use ours instead. The pyproject.toml file has two separate lists, allowing us to distinguish between runtime and development dependencies.

$ poetry add matplotlib numpy
$ poetry add --group dev pylint
$ poetry install

These two sets of dependencies will be used in different circumstances. When we build our package and upload it to a package repository, Poetry will only include references to our runtime dependencies. This is because someone installing our software through a tool like pip is only using it, but probably does not intend to contribute to the development of our software and does not require development dependencies.

In contrast, if someone downloads our code from GitHub, together with our pyproject.toml, and installs the project that way, they will get both our runtime and development dependencies. If someone is downloading our source code, that suggests that they intend to contribute to the development, so they will need all of our development tools.

Have a look at the pyproject.toml file again to see what’s changed.

Packaging Our Code

The final preparation we need to do is to make sure that our code is organised in the recommended structure. This is the Python module structure - a directory containing an __init__.py and our Python source code files. Make sure that the name of this Python package (inflammation - unless you have renamed it) matches the name of your distributable package in pyproject.toml unless you have chosen to explicitly list the module packages.

By convention distributable package names use hyphens, whereas module package names use underscores. While we could choose to use underscores in a distributable package name, we cannot use hyphens in a module package name, as Python will interpret them as a minus sign in our code when we try to import them.

Once we have got our pyproject.toml configuration done and our project is in the right structure, we can go ahead and build a distributable version of our software:

$ poetry build

This should produce two files for us in the dist directory. The one we care most about is the .whl or wheel file. This is the file that pip uses to distribute and install Python packages, so this is the file we would need to share with other people who want to install our software.

Now if we gave this wheel file to someone else, they could install it using pip - you do not need to run this command yourself, you have already installed it using poetry install above.

$ python3 -m pip install dist/inflammation*.whl

The star in the line above is a wildcard, that means Bash should use any filenames that match that pattern, with any number of characters in place for the star. We could also rely on Bash’s autocomplete functionality and type dist/inflammation, then hit the Tab key if we have only got one version built.

After we have been working on our code for a while and want to publish an update, we just need to update the version number in the pyproject.toml file (using SemVer perhaps), then use Poetry to build and publish the new version. If we do not increment the version number, people might end up using this version, even though they thought they were using the previous one. Any re-publishing of the package, no matter how small the changes, needs to come with a new version number. The advantage of SemVer is that the change in the version number indicates the degree of change in the code and thus the degree of risk of breakage when we update.

$ poetry build

In addition to the commands we have already seen, Poetry contains a few more that can be useful for our development process. For the full list see the Poetry CLI documentation.

The final step is to publish our package to a package repository. A package repository could be either public or private - while you may at times be working on public projects, it is likely the majority of your work will be published internally using a private repository such as JFrog Artifactory. Every repository may be configured slightly differently, so we will leave that to you to investigate.

What if We Need More Control?

Sometimes we need more control over the process of building our distributable package than Poetry allows. There many ways to distribute Python code in packages, with some degree of flux in terms of which methods are most popular. For a more comprehensive overview of Python packaging you can see the Python docs on packaging, which contains a helpful guide to the overall packaging process, or ‘flow’, using the Twine tool to upload created packages to PyPI for distribution as an alternative.

Optional Exercise: Enhancing our Package Metadata

The Python Packaging User Guide provides documentation on how to package a project using a manual approach to building a pyproject.toml file, and using Twine to upload the distribution packages to PyPI.

Referring to the section on metadata in the documentation, enhance your pyproject.toml with some additional metadata fields to improve the information your package.

Key Points

  • Poetry allows us to produce an installable package and upload it to a package repository.

  • Making our software installable with Pip makes it easier for others to start using it.

  • For complete control over building a package, we can use a setup.py file.


Section 5: Managing and Improving Software Over Its Lifetime

Overview

Teaching: 5 min
Exercises: 0 min
Questions
  • How do we manage the process of developing and improving our software?

  • How do we ensure we reuse other people’s code while maintaining the sustainability of our own software?

Objectives
  • Use established tools to track and manage software problems and enhancements in a team.

  • Understand the importance of critical reflection to improving software quality and reusability.

  • Improve software through feedback, work estimation, prioritisation and agile development.

In this section of the course we look at managing the development and evolution of software - how to keep track of the tasks the team has to do, how to improve the quality and reusability of our software for others as well as ourselves, and how to assess other people’s software for reuse within our project. The focus in this section will move beyond just software development to software management: internal planning and prioritising tasks for future development, management of internal communication as well as how the outside world interacts with and makes use of our software, how others can interact with ourselves to report issues, and the ways we can successfully manage software improvement in response to feedback.

Managing software

In this section we will:

Key Points

  • For software to succeed it needs to be managed as well as developed.

  • Estimating the effort to deliver work items is a foundational tool for prioritising that work.


Managing a Collaborative Software Project

Overview

Teaching: 15 min
Exercises: 20 min
Questions
  • How can we keep track of identified issues and the list of tasks the team has to do?

  • How can we communicate within a team on code-related issues and share responsibilities?

  • How can we plan, prioritise and manage tasks for future development?

Objectives
  • Register and track progress on issues with the code in our project repository

  • Describe some different types of issues we can have with software

  • Manage communications on software development activities within the team using GitHub’s notification system Mentions

  • Use GitHub’s Project Boards and Milestones for software project management, planning sprints and releases

Introduction

Developing software is a project and, like most projects, it consists of multiple tasks. Keeping track of identified issues with the software, the list of tasks the team has to do, progress on each, prioritising tasks for future development, planning sprints and releases, etc., can quickly become a non-trivial task in itself. Without a good team project management process and framework, it can be hard to keep track of what’s done, or what needs doing, and particularly difficult to convey that to others in the team or share the responsibilities.

Using GitHub to Manage Issues With Software

As a piece of software is used, bugs and other issues will inevitably come to light - nothing is perfect! If you work on your code with collaborators, or have non-developer users, it can be helpful to have a single shared record of all the problems people have found with the code, not only to keep track of them for you to work on later, but to avoid people emailing you to report a bug that you already know about!

GitHub provides Issues - a framework for managing bug reports, feature requests, and lists of future work.

Go back to the home page for your python-intermediate-inflammation repository in GitHub, and click on the Issues tab. You should see a page listing the open issues on your repository - currently there should be none. If you do not see the Issues tab, you must first enable it in the settings of your repository: go to the Settings tab, scroll down to the Features section and activate the checkmark on Issues.

List of project issues in GitHub

Let us go through the process of creating a new issue. Start by clicking the New issue button.

Creating a new issue in GitHub

When you create an issue, you can add a range of details to them. They can be assigned to a specific developer for example - this can be a helpful way to know who, if anyone, is currently working to fix the issue, or a way to assign responsibility to someone to deal with it.

They can also be assigned a label. The labels available for issues can be customised, and given a colour, allowing you to see at a glance the state of your code’s issues. The default labels available in GitHub include:

You can also create your own custom labels to help with classifying issues. There are no rules really about naming the labels - use whatever makes sense for your project. Some conventional custom labels include: status:in progress (to indicate that someone started working on the issue), status:blocked (to indicate that the progress on addressing issue is blocked by another issue or activity), etc.

As well as highlighting problems, the bug label can make code much more usable by allowing users to find out if anyone has had the same problem before, and also how to fix (or work around) it on their end. Enabling users to solve their own problems can save you a lot of time. In general, a good bug report should contain only one bug, specific details of the environment in which the issue appeared (e.g. operating system or browser, version of the software and its dependencies), and sufficiently clear and concise steps that allow a developer to reproduce the bug themselves. They should also be clear on what the bug reporter considers factual (“I did this and this happened”) and speculation (“I think it was caused by this”). If an error report was generated from the software itself, it is a very good idea to include that in the issue.

The enhancement label is a great way to communicate your future priorities to your collaborators but also to yourself - it’s far too easy to leave a software project for a few months to work on something else, only to come back and forget the improvements you were going to make. If you have other users for your code, they can use the label to request new features, or changes to the way the code operates. It’s generally worth paying attention to these suggestions, especially if you spend more time developing than running the code. It can be very easy to end up with quirky behaviour because of off-the-cuff choices during development. Extra pairs of eyes can point out ways the code can be made more accessible - the easier the code is to use, the more widely it will be adopted and the greater impact it will have.

One interesting label is wontfix, which indicates that an issue simply will not be worked on for whatever reason. Maybe the bug it reports is outside of the use case of the software, or the feature it requests simply is not a priority. This can make it clear you have thought about an issue and dismissed it.

Locking and Pinning Issues

The Lock conversation and Pin issue buttons are both available from individual issue pages. Locking conversations allows you to block future comments on the issue, e.g. if the conversation around the issue is not constructive or violates your team’s code of conduct. Pinning issues allows you to pin up to three issues to the top of the issues page, e.g. to emphasise their importance.

Manage Issues With Your Code Openly

Having open, publicly-visible lists of the limitations and problems with your code is incredibly helpful. Even if some issues end up languishing unfixed for years, letting users know about them can save them a huge amount of work attempting to fix what turns out to be an unfixable problem on their end. It can also help you see at a glance what state your code is in, making it easier to prioritise future work!

Exercise: Our First Issue!

Individually, with a critical eye, think of an aspect of the code you have developed so far that needs improvement. It could be a bug, for example, or a documentation issue with your README, a missing LICENSE file, or an enhancement. In GitHub, enter the details of the issue and select Submit new issue. Add a label to your issue, if appropriate.

Solution

For example, “Add a licence file” could be a good first issue, with a label documentation.

Issue (and Pull Request) Templates

GitHub also allows you to set up issue and pull request templates for your software project. Such templates provide a structure for the issue/pull request descriptions, and/or prompt issue reporters and collaborators to fill in answers to pre-set questions. They can help contributors raise issues or submit pull requests in a way that is clear, helpful and provides enough information for maintainers to act upon (without going back and forth to extract it). GitHub provides a range of default templates, but you can also write your own.

Using GitHub’s Notifications & Referencing System to Communicate

GitHub implements a comprehensive notifications system to keep the team up-to-date with activities in your code repository and notify you when something happens or changes in your software project. You can choose whether to watch or unwatch an individual repository, or can choose to only be notified of certain event types such as updates to issues, pull requests, direct mentions, etc. GitHub also provides an additional useful notification feature for collaborative work - Mentions. In addition to referencing team members (which will result in an appropriate notification), GitHub allows us to reference issues, pull requests and comments from one another - providing a useful way of connecting things and conversations in your project.

Referencing Team Members Using Mentions

The mention system notifies team members when somebody else references them in an issue, comment or pull request - you can use this to notify people when you want to check a detail with them, or let them know something has been fixed or changed (much easier than writing out all the same information again in an email).

You can use the mention system to link to/notify an individual GitHub account or a whole team for notifying multiple people. Typing @ in GitHub will bring up a list of all accounts and teams linked to the repository that can be “mentioned”. People will then receive notifications based on their preferred notification methods - e.g. via email or GitHub’s User Interface.

Referencing Issues, Pull Requests and Comments

GitHub also lets you mention/reference one issue or pull request from another (and people “watching” these will be notified of any such updates). Whilst writing the description of an issue, or commenting on one, if you type # you should see a list of the issues and pull requests on the repository. They are coloured green if they are open, or white if they are closed. Continue typing the issue number, and the list will narrow down, then you can hit Return to select the entry and link the two. For example, if you realise that several of your bugs have common roots, or that one enhancement cannot be implemented before you have finished another, you can use the mention system to indicate the depending issue(s). This is a simple way to add much more information to your issues.

While not strictly notifying anyone, GitHub lets you also reference individual comments and commits. If you click the ... button on a comment, from the drop down list you can select to Copy link (which is a URL that points to that comment that can be pasted elsewhere) or to Reference [a comment] in a new issue (which opens a new issue and references the comment by its URL). Within a text box for comments, issue and pull request descriptions, you can reference a commit by pasting its long, unique identifier (or its first few digits which uniquely identify it) and GitHub will render it nicely using the identifier’s short form and link to the commit in question.

Referencing comments and commits in GitHub

Exercise: Our First Mention/Reference!

Add a mention to one of your team members using the @ notation in a comment within an issue or a pull request in your repository - e.g. to ask them a question or a clarification on something or to do some additional work.

Alternatively, add another issue to your repository and reference the issue you created in the previous exercise using the # notation.

You Are Also a User of Your Code

This section focuses a lot on how issues and mentions can help communicate the current state of the code to others and document what conversations were held around particular issues. As a sole developer, and possibly also the only user of the code, you might be tempted to not bother with recording issues, comments and new features as you do not need to communicate the information to anyone else.

Unfortunately, human memory is not infallible! After spending six months on a different topic, it is inevitable you’ll forget some of the plans you had and problems you faced. Not documenting these things can lead to you having to re-learn things you already put the effort into discovering before. Also, if others are brought on to the project at a later date, the software’s existing issues and potential new features are already in place to build upon.

Software Project Management in GitHub

Managing issues within your software project is one aspect of project management but it gives a relative flat representation of tasks and may not be as suitable for higher-level project management such as prioritising tasks for future development, planning sprints and releases. Luckily, GitHub provides two project management tools for this purpose - Projects and Milestones.

Both GitHub Projects and Milestones provide agile development and project management systems and ways of organising issues into smaller “sub-projects” (i.e. smaller than the “project” represented by the whole repository). Projects provide a way of visualising and organising work which is not time-bound and is on a higher level (e.g. more suitable for project management tasks). Milestones are typically used to organise lower-level tasks that have deadlines and progress of which needs to be closely tracked (e.g. release and version management). The main difference is that Milestones are a repository-level feature (i.e. they belong and are managed from a single repository), whereas projects are account-level and can manage tasks across many repositories under the same user or organisational account.

How you organise and partition your project work and which tool you want to use to track progress (if at all) is up to you and the size of your project. For example, you could create a project per milestone or have several milestones in a single project, or split milestones into shorter sprints. We will use Milestones soon to organise work on a mini sprint within our team - for now, we will have a brief look at Projects.

Projects

A GitHub Project uses a “project board” consisting of columns and cards to keep track of tasks (although GitHub now also provides a table view over a project’s tasks). You break down your project into smaller sub-projects, which in turn are split into tasks which you write on cards, then move the cards between columns that describe the status of each task. Cards are usually small, descriptive and self-contained tasks that build on each other. Breaking a project down into clearly-defined tasks makes it a lot easier to manage. GitHub project boards interact and integrate with the other features of the site such as issues and pull requests - cards can be added to track the progress of such tasks and automatically moved between columns based on their progress or status.

GitHub projects are “an adaptable, flexible tool for planning and tracking work on GitHub” - they now provide interchangeable spreadsheet, task-board, or roadmap views of your project that integrates with your issues and pull requests on GitHub to help you plan and track your work effectively. We recommend you to have a look at GitHub’s documentation on Projects and see if they are suitable for your software development workflow.

GitHub Projects are a Cross-Repository Management Tool

Project in GitHub are created on a user or organisation level, i.e. they can span all repositories owned by a user or organisation in GitHub and are not a repository-level feature any more. A project can integrate your issues and pull requests on GitHub from multiple repositories to help you plan and track your team’s work effectively.

Let us have a quick look at how Projects are created in GitHub - we will not use them much in this course but it is good to be aware of how to make use of them when suitable.

  1. From your GitHub account’s home page (not your repository’s home page!), select the “Projects” tab, then click the New project button on the right.

    Adding a new project board in GitHub

  2. In the “Create project” pop-up window, you can either start from one of the featured existing project templates or create your project from scratch using one of the three standard project types/views that you customise yourself:
    • Table - a spreadsheet-style table to filter, sort and group your issues and pull requests.
    • Board - a “cards on a board” view of the project, with issues and pull requests being spread across customizable columns as cards on kanban board
    • Roadmap - suitable for a high-level visualisation of your project over time. Selecting a project board template in GitHub Regardless of which project type/view you select, you can easily switch to a different project layout later on.
  3. For example, select the “Board” type for the project, fill in the name of your project (e.g. “Inflammation project - release v0.1”), and select Create project.
  4. After it is created, you should also populate the description of the project from the project’s Settings, which can be found by clicking the ... button in the top right corner of the project. Project board setting in GitHub Adding project description and metadata in GitHub After adding a description, select Save.

  5. GitHub’s default card board template contains the following three columns with pretty self-explanatory names:

    • To Do
    • In Progress
    • Done

    Default card board in GitHub

    You can add or remove columns from your project board to suit your use case. One commonly seen extra column is On hold or Waiting - if you have tasks that get held up by waiting on other people (e.g. to respond to your questions) then moving them to a separate column makes their current state clearer. Another way to organise your table is to have a column for each quarter of the year - it is up to you to decide how you want to view your project’s activities.

    To add a new column, press the + button on the right; to remove a column select the ... button in the top right corner of the column itself and then the Delete column option.

  6. You can now add new items (cards) to columns by pressing the + Add item button at the bottom of each column (see the previous image) - a text box to add a card will appear. Cards can be simple textual notes which you type into the text box and pres Enter when finished. Cards can also be (links to) existing issues and pull requests, which can be filtered out from the text box by pressing # (to activate GitHub’s referencing mechanism) and selecting the repository and an issue or pull request from that repository that you want to add.

    Adding issues and notes to a project board in GitHub

    Notes contain task descriptions and can have detailed content like checklists. In some cases, e.g. if a note becomes too complex, you may want to convert it into an issue so you can add labels, assign them to team members or write more detailed comments (for that, use the Convert to issue option from the ... menu on the card itself).

    Converting a task to issue

  7. In addition to creating new tasks as notes and converting them to issues - you can add an existing issue or pull request (from any repository visible to you) as a task on a column by pasting its URL into the Add item field and pressing the Enter key.
  8. You can drag a task/card from Todo to In Progress column to indicate that you are working on it or to the Done column to indicate that it has been completed. Issues and pull requests on cards will automatically be moved to the Done column for you when you close the issue or merge the pull request - which is very convenient and can save you some project management time.
  9. Finally, you can change the way you view your project by adding another view. For example, we can add a Table view to our Board view by clicking the New button and selecting it from the drop down menu. Add another project view

Exercise: Working With Projects

Spend a few minutes planning what you want to do with your project as a bigger chunk of work (you can continue working on the first release of your software if you like) and play around with your project board to manage tasks around the project:

  • practice adding and removing columns,
  • practice adding different types of cards (notes and from already existing open issues and/or unmerged pull requests),
  • practice turing cards into issues and closing issues, etc.

Make sure to add a certain number of issues to your repository to be able to use in your project board.

Prioritisation With Project Boards

Once your project board has a large number of cards on it, you might want to begin priorisiting them. Not all tasks are going to be equally important, and some will require others to be completed before they can even be begun. Common methods of prioritisation include:

  • Vertical position: the vertical arrangement of cards in a column implicitly represents their importance. High-priority issues go to the top of To Do, whilst tasks that depend on others go beneath them. This is the easiest one to implement, though you have to remember to correctly place cards when you add them.
  • Priority columns: instead of a single To Do column, you can have two or more, for example - To Do: Low Priority and To Do: High Priority. When adding a card, you pick which is the appropriate column for it. You can even add a Triage column for newly-added issues that you’ve not yet had time to classify. This format works well for project boards devoted to bugs.
  • Labels: if you convert each card into an issue, then you can label them with their priority - remember GitHub lets you create custom labels and set their colours. Label colours can provide a very visually clear indication of issue priority but require more administrative work on the project, as each card has to be an issue to be assigned a label. If you choose this route for issue prioritisation - be aware of accessibility issues for colour-blind people when picking colours.

Key Points

  • We should use GitHub’s Issues to keep track of software problems and other requests for change - even if we are the only developer and user.

  • GitHub’s Mentions play an important part in communicating between collaborators and is used as a way of alerting team members of activities and referencing one issue/pull requests/comment/commit from another.

  • Without a good project and issue management framework, it can be hard to keep track of what’s done, or what needs doing, and particularly difficult to convey that to others in the team or sharing the responsibilities.


Assessing Software for Suitability and Improvement

Overview

Teaching: 15 min
Exercises: 30 min
Questions
  • What makes good code actually good?

  • What should we look for when selecting software to reuse?

Objectives
  • Explain why a critical mindset is important when selecting software

  • Conduct an assessment of software against suitability criteria

  • Describe what should be included in software issue reports and register them

Introduction

What we have been looking at so far enables us to adopt a more proactive and managed attitude and approach to the software we develop. But we should also adopt this attitude when selecting and making use of third-party software we wish to use. With pressing deadlines it is very easy to reach for a piece of software that appears to do what you want without considering properly whether it is a good fit for your project first. A chain is only as strong as its weakest link, and our software may inherit weaknesses in any dependent software or create other problems.

Overall, when adopting software to use it is important to consider not only whether it has the functionality you want, but a broader range of qualities that are important for your project. Adopting a critical mindset when assessing other software against suitability criteria will help you adopt the same attitude when assessing your own software for future improvements.

Assessing Software for Suitability

Exercise: Decide on Your Group’s Repository!

You all have your code repositories you have been working on throughout the course so far. For the upcoming exercise, groups will exchange repositories and review the code of the repository they inherit, and provide feedback.

  1. Decide as a team on one of your repositories that will represent your group. You can do this any way you wish, but if you are having trouble then a pseudo-random number might help: python -c "import numpy as np; print(np.random.randint(low=1, high=<size_group_plus_1>))"
  2. Add the URL of the repository to the section of the shared notes labelled ‘Decide on your Group’s Repository’, next to your team’s name.

Exercise: Conduct Assessment on Third-Party Software

The scenario: It is envisaged that a piece of software developed by another team will be adopted and used for the long term in a number of future projects. You have been tasked with conducting an assessment of this software to identify any issues that need resolving prior to working with it, and will provide feedback to the developing team to fix these issues.

  1. As a team, briefly decide who will assess which aspect of the repository, e.g. its documentation, tests, codebase, etc.
  2. Obtain the URL for the repository you will assess from the shared notes document, in the section labelled ‘Decide on your Group’s Repository’ - see the last column which indicates which team’s repository you are assessing.
  3. Conduct the assessment and register any issues you find on the other team’s software repository on GitHub.
  4. Be meticulous in your assessment and register as many issues as you can!

Supporting Your Software - How and How Much?

Within your collaborations and projects, what should you do to support other users? Here are some key aspects to consider:

  • Provide contact information: so users know what to do and how to get in contact if they run into problems
  • Manage your support: an issue tracker - like the one in GitHub - is essential to track and manage issues
  • Manage expectations: let users know the level of support you offer, in terms of when they can expect responses to queries, the scope of support (e.g. which platforms, types of releases, etc.), the types of support (e.g. bug resolution, helping develop tailored solutions), and expectations for support in the future (e.g. when project funding runs out)

All of this requires effort, and you cannot do everything. It is therefore important to agree and be clear on how the software will be supported from the outset, whether it is within the context of a single laboratory, project, or other collaboration, or across an entire community.

Key Points

  • It is as important to have a critical attitude to adopting software as we do to developing it.

  • As a team agree on who and to what extent you will support software you make available to others.


Software Improvement Through Feedback

Overview

Teaching: 25 min
Exercises: 45 min
Questions
  • How should we handle feedback on our software?

  • How, and to what extent, should we provide support to our users?

Objectives
  • Prioritise and work on externally registered issues

  • Respond to submitted issue reports and provide feedback

  • Explain the importance of software support and choosing a suitable level of support

Introduction

When a software project has been around for even just a short amount of time, you’ll likely discover many aspects that can be improved. These can come from issues that have been registered via collaborators or users, but also those you are aware of internally, which should also be registered as issues. When starting a new software project, you’ll also have to determine how you’ll handle all the requirements. But which ones should you work on first, which are the most important and why, and how should you organise all this work?

Software has a fundamental role to play in doing science, but unfortunately software development is often given short shrift in academia when it comes to prioritising effort. There are also many other draws on our time in addition to the research, development, and writing of publications that we do, which makes it all the more important to prioritise our time for development effectively.

In this lesson we will be looking at prioritising work we need to do and what we can use from the agile perspective of project management to help us do this in our software projects.

Estimation as a Foundation for Prioritisation

For simplicity, we will refer to our issues as requirements, since that’s essentially what they are - new requirements for our software to fulfil.

But before we can prioritise our requirements, there are some things we need to find out.

Firstly, we need to know:

We also need estimates for how long each requirement will take to resolve, since we cannot meaningfully prioritise requirements without knowing what the effort tradeoffs will be. Even if we know how important each requirement is, how would we even know if completing the project is possible? Or if we do not know how long it will take to deliver those requirements we deem to be critical to the success of a project, how can we know if we can include other less important ones?

It is often not the reality, but estimation should ideally be done by the people likely to do the actual work (i.e. the Research Software Engineers, researchers, or developers). It shouldn’t be done by project managers or PIs simply because they are not best placed to estimate, and those doing the work are the ones who are effectively committing to these figures.

Why is it so Difficult to Estimate?

Estimation is a very valuable skill to learn, and one that is often difficult. Lack of experience in estimation can play a part, but a number of psychological causes can also contribute. One of these is Dunning-Kruger, a type of cognitive bias in which people tend to overestimate their abilities, whilst in opposition to this is imposter syndrome, where due to a lack of confidence people underestimate their abilities. The key message here is to be honest about what you can do, and find out as much information that is reasonably appropriate before arriving at an estimate.

More experience in estimation will also help to reduce these effects. So keep estimating!

An effective way of helping to make your estimates more accurate is to do it as a team. Other members can ask prudent questions that may not have been considered, and bring in other sanity checks and their own development experience. Just talking things through can help uncover other complexities and pitfalls, and raise crucial questions to clarify ambiguities.

Where to Record Effort Estimates?

There is no dedicated place to record the effort estimate on an issue in current GitHub’s interface. Therefore, you can agree on a convention within your team on how to record this information - e.g. you can add the effort in person/days in the issue title. Recording estimates within comments on an issue may not be the best idea as it may get lost among other comments. Another place where you can record estimates for your issues is on project boards - there is no default field for this but you can create a custom numeric field and use it to assign effort estimates (note that you cannot sum them yet in the current GitHub’s interface).

Exercise: Estimate!

As a team go through the issues that your partner team has registered with your software repository, and quickly estimate how long each issue will take to resolve in minutes. Do this by blind consensus first, each anonymously submitting an estimate, and then briefly discuss your rationale and decide on a final estimate. Make sure these are honest estimates, and you are able to complete them in the allotted time!

Using MoSCoW to Prioritise Work

Now we have our estimates we can decide how important each requirement is to the success of the project. This should be decided by the project stakeholders; those - or their representatives - who have a stake in the success of the project and are either directly affected or affected by the project, e.g. Principle Investigators, researchers, Research Software Engineers, collaborators, etc.

To prioritise these requirements we can use a method called MoSCoW, a way to reach a common understanding with stakeholders on the importance of successfully delivering each requirement for a timebox. MoSCoW is an acronym that stands for Must have, Should have, Could have, and Won’t have. Each requirement is discussed by the stakeholder group and falls into one of these categories:

In typical use, the ratio to aim for of requirements to the MH/SH/CH categories is 60%/20%/20% for a particular timebox. Importantly, the division is by the requirement estimates, not by number of requirements, so 60% means 60% of the overall estimated effort for requirements are Must Haves.

Why is this important? Because it gives you a unique degree of control of your project for each time period. It awards you 40% of flexibility with allocating your effort depending on what’s critical and how things progress. This effectively forces a tradeoff between the effort available and critical objectives, maintaining a significant safety margin. The idea is that as a project progresses, even if it becomes clear that you are only able to deliver the Must Haves for a particular time period, you have still delivered it successfully.

GitHub’s Milestones

Once we have decided on those we will work on (i.e. not Won’t Haves), we can (optionally) use a GitHub’s Milestone to organise them for a particular timebox. Remember, a milestone is a collection of issues to be worked on in a given period (or timebox). We can create a new one by selecting Issues on our repository, then Milestones to display any existing milestones, then clicking the “New milestone” button to the right.

Milestones in GitHub

Create a milestone in GitHub

We add in a title, a completion date (i.e. the end of this timebox), and any description for the milestone.

Create a milestone in GitHub

Once created, we can view our issues and assign them to our milestone from the Issues page or from an individual issue page.

Milestones in GitHub

Let us now use Milestones to plan and prioritise our team’s next sprint.

Exercise: Prioritise!

Put your stakeholder hats on, and as a team apply MoSCoW to the repository issues to determine how you will prioritise effort to resolve them in the allotted time. Try to stick to the 60/20/20 rule, and assign all issues you will be working on (i.e. not Won't Haves) to a new milestone, e.g. “Tidy up documentation” or “version 0.1”.

Using Sprints to Organise and Work on Issues

A sprint is an activity applied to a timebox, where development is undertaken on the agreed prioritised work for the period. In a typical sprint, there are daily meetings called scrum meetings which check on how work is progressing, and serves to highlight any blockers and challenges to meeting the sprint goal.

Exercise: Conduct a Mini Mini-Sprint

For the remaining time in this course, assign repository issues to team members and work on resolving them as per your MoSCoW breakdown. Once an issue has been resolved, notable progress made, or an impasse has been reached, provide concise feedback on the repository issue. Be sure to add the other team members to the chosen repository so they have access to it. You can grant Write access to others on a GitHub repository via the Settings tab for a repository, then selecting Collaborators, where you can invite other GitHub users to your repository with specific permissions.

Time: however long is left

Depending on how many issues were registered on your repository, it is likely you will not have resolved all the issues in this first milestone. Of course, in reality, a sprint would be over a much longer period of time. In any event, as the development progresses into future sprints any unresolved issues can be reconsidered and prioritised for another milestone, which are then taken forward, and so on. This process of receiving new requirements, prioritisation, and working on them is naturally continuous - with the benefit that at key stages you are repeatedly re-evaluating what is important and needs to be worked on which helps to ensure real concrete progress against project goals and requirements which may change over time.

Project Boards For Planning Sprints

Remember, you can use project boards for higher-level project management - e.g. planning several sprints in advance (and use milestones for tracking progress on individual sprints).

Key Points

  • Prioritisation is a key tool in academia where research goals can change and software development is often given short shrift.

  • In order to prioritise things to do we must first estimate the effort required to do them.

  • For accurate effort estimation, it should be done by the people who will actually do the work.

  • Aim to reduce cognitive biases in effort estimation by being honest about your abilities.

  • Ask other team members - or do estimation as a team - to help make accurate estimates.

  • MoSCoW is a useful technique for prioritising work to help ensure projects deliver successfully.

  • Aim for a 60%/20%/20% ratio of Must Haves/Should Haves/Could Haves for requirements within a timebox.


Wrap-up

Overview

Teaching: 15 min
Exercises: 0 min
Questions
  • Looking back at what was covered and how different pieces fit together

  • Where are some advanced topics and further reading available?

Objectives
  • Put the course in context with future learning.

Summary

As part of this course we have looked at a core set of established, intermediate-level software development tools and best practices for working as part of a team. The course teaches a selected subset of skills that have been tried and tested in collaborative research software development environments, although not an all-encompassing set of every skill you might need (check some further reading). It will provide you with a solid basis for writing industry-grade code, which relies on the same best practices taught in this course:

Reflection Exercise: Putting the Pieces Together

As a group, reflect on the concepts (e.g. tools, techniques and practices) covered throughout the course, how they relate to one another, how they fit together in a bigger picture or skill learning pathways and in which order you need to learn them.

Solution

One way to think about these concepts is to make a list and try to organise them along two axes - ‘perceived usefulness of a concept’ versus ‘perceived difficulty or time needed to master a concept’, as shown in the table below (for the exercise, you can make your own copy of the template table for the purpose of this exercise). You then may think in which order you want to learn the skills and how much effort they require - e.g. start with those that are more useful but, for the time being, hold off those that are not too useful to you and take loads of time to master. You will likely want to focus on the concepts in the top right corner of the table first, but investing time to master more difficult concepts may pay off in the long run by saving you time and effort and helping reduce technical debt.

Usefulness versus time to master grid

Another way you can organise the concepts is using a concept map (a directed graph depicting suggested relationships between concepts) or any other diagram/visual aid of your choice. Below are some example views of tools and techniques covered in the course using concept maps. Your views may differ but that is not to say that either view is right or wrong. This exercise is meant to get you to reflect on what was covered in the course and hopefully to reinforce the ideas and concepts you learned.

Overview of tools and techniques covered in the course

A different concept map tries to organise concepts/skills based on their level of difficulty (novice, intermediate and advanced, and in-between!) and tries to show which skills are prerequisite for others and in which order you should consider learning skills.

Overview of topics covered in the course based on level of difficulty

Further Resources

Below are some additional resources to help you continue learning:

Key Points

  • Collaborative techniques and tools play an important part of research software development in teams.