This lesson is in the early stages of development (Alpha version)

Building Apptainer images

Overview

Teaching: 30 min
Exercises: 30 min
Questions
  • How do I create my own Apptainer images?

Objectives
  • Understand the different Apptainer container file formats.

  • Understand how to build and share your own Apptainer containers.

Building Apptainer images

Introduction

As a platform that is widely used in the scientific/research software and HPC communities, Apptainer provides great support for reproducibility. If you build a Apptainer image for some scientific software, it’s likely that you and/or others will want to be able to reproduce exactly the same environment again. Maybe you want to verify the results of the code or provide a means that others can use to verify the results to support a paper or report. Maybe you’re making a tool available to others and want to ensure that they have exactly the right version/configuration of the code.

Similarly to Docker and many other modern software tools, Apptainer follows the “Configuration as code” approach and a container configuration can be stored in a file which can then be committed to your version control system alongside other code. Assuming it is suitably configured, this file can then be used by you or other individuals (or by automated build tools) to reproduce a container with the same configuration at some point in the future.

Different approaches to building images

There are various approaches to building Apptainer images. We highlight two different approaches here and focus on one of them:

You can take a look at Apptainer’s “Build a Container” documentation for more details on different approaches to building containers.

Why look at Apptainer Definition Files?

Why do you think we might be looking at the definition file approach here rather than the sandbox approach?

Discussion

The sandbox approach is great for prototyping and testing out an image configuration but it doesn’t provide the best support for our ultimate goal of reproducibility. If you spend time sitting at your terminal in front of a shell typing different commands to add configuration, maybe you realise you made a mistake so you undo one piece of configuration and change it. This goes on until you have your completed, working configuration but there’s no explicit record of exactly what you did to create that configuration.

Say your container image file gets deleted by accident, or someone else wants to create an equivalent image to test something. How will they do this and know for sure that they have the same configuration that you had? With a definition file, the configuration steps are explicitly defined and can be easily stored (and re-run).

Definition files are small text files while container files may be very large, multi-gigabyte files that are difficult and time consuming to move around. This makes definition files ideal for storing in a version control system along with their revisions.

Creating a Apptainer Definition File

A Apptainer Definition File is a text file that contains a series of statements that are used to create a container image. In line with the configuration as code approach mentioned above, the definition file can be stored in your code repository alongside your application code and used to create a reproducible image. This means that for a given commit in your repository, the version of the definition file present at that commit can be used to reproduce a container with a known state. It was pointed out earlier in the course, when covering Docker, that this property also applies for Dockerfiles.

We’ll now look at a very simple example of a definition file:

Bootstrap: docker
From: ubuntu:20.04

%post
    apt-get -y update && apt-get install -y python

%runscript
    python -c 'print("Hello World! Hello from our custom Apptainer image!")'

A definition file has a number of optional sections, specified using the % prefix, that are used to define or undertake different configuration during different stages of the image build process. You can find full details in Apptainer’s Definition Files documentation. In our very simple example here, we only use the %post and %runscript sections.

Let’s step through this definition file and look at the lines in more detail:

Bootstrap: docker
From: ubuntu:20.04

These first two lines define where to bootstrap our image from. Why can’t we just put some application binaries into a blank image? Any applications or tools that we want to run will need to interact with standard system libraries and potentially a wide range of other libraries and tools. These need to be available within the image and we therefore need some sort of operating system as the basis for our image. The most straightforward way to achieve this is to start from an existing base image containing an operating system. In this case, we’re going to start from a minimal Ubuntu 20.04 Linux Docker image. Note that we’re using a Docker image as the basis for creating a Apptainer image. This demonstrates the flexibility in being able to start from different types of images when creating a new Apptainer image.

The Bootstrap: docker line is similar to prefixing an image path with docker:// when using, for example, the apptainer pull command. A range of different bootstrap options are supported. From: ubuntu:20.04 says that we want to use the ubuntu image with the tag 20.04 from Docker Hub.

Next we have the %post section of the definition file:

%post
    apt-get -y update && apt-get install -y python3

In this section of the file we can do tasks such as package installation, pulling data files from remote locations and undertaking local configuration within the image. The commands that appear in this section are standard shell commands and they are run within the context of our new container image. So, in the case of this example, these commands are being run within the context of a minimal Ubuntu 20.04 image that initially has only a very small set of core packages installed.

Here we use Ubuntu’s package manager to update our package indexes and then install the python3 package along with any required dependencies. The -y switches are used to accept, by default, interactive prompts that might appear asking you to confirm package updates or installation. This is required because our definition file should be able to run in an unattended, non-interactive environment.

Finally we have the %runscript section:

%runscript
    python3 -c 'print("Hello World! Hello from our custom Apptainer image!")'

This section is used to define a script that should be run when a container is started based on this image using the apptainer run command. In this simple example we use python3 to print out some text to the console.

We can now save the contents of the simple defintion file shown above to a file and build an image based on it. In the case of this example, the definition file has been named my_test_image.def. (Note that the instructions here assume you’ve bound the image output directory you created to the /home/apptainer directory in your Docker Apptainer container, as explained in the “Getting started with the Docker Apptainer image” section above.):

$ apptainer build /home/apptainer/my_test_image.sif /home/apptainer/my_test_image.def

Recall from the details at the start of this section that if you are running your command from the host system command line, running an instance of a Docker container for each run of the command, your command will look something like this:

$ docker run --privileged --rm -v ${PWD}:/home/apptainer quay.io/apptainer/apptainer:v3.5.3-slim build /home/apptainer/my_test_image.sif /home/apptainer/my_test_image.def

The above command requests the building of an image based on the my_test_image.def file with the resulting image saved to the my_test_image.sif file. Note that you will need to prefix the command with sudo if you’re running a locally installed version of Apptainer and not running via Docker because it is necessary to have administrative privileges to build the image. You should see output similar to the following:

INFO:    Starting build...
Getting image source signatures
Copying blob d51af753c3d3 skipped: already exists
Copying blob fc878cd0a91c skipped: already exists
Copying blob 6154df8ff988 skipped: already exists
Copying blob fee5db0ff82f skipped: already exists
Copying config 95c3f3755f done
Writing manifest to image destination
Storing signatures
2020/04/29 13:36:35  info unpack layer: sha256:d51af753c3d3a984351448ec0f85ddafc580680fd6dfce9f4b09fdb367ee1e3e
2020/04/29 13:36:36  info unpack layer: sha256:fc878cd0a91c7bece56f668b2c79a19d94dd5471dae41fe5a7e14b4ae65251f6
2020/04/29 13:36:36  info unpack layer: sha256:6154df8ff9882934dc5bf265b8b85a3aeadba06387447ffa440f7af7f32b0e1d
2020/04/29 13:36:36  info unpack layer: sha256:fee5db0ff82f7aa5ace63497df4802bbadf8f2779ed3e1858605b791dc449425
INFO:    Running post scriptlet
+ apt-get -y update
Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
...
  [Package update output truncated]
...
Fetched 13.4 MB in 2s (5575 kB/s)                            
Reading package lists... Done
+ apt-get install -y python3
Reading package lists... Done
...
  [Package install output truncated]
...Processing triggers for libc-bin (2.31-0ubuntu9) ...
INFO:    Adding runscript
INFO:    Creating SIF file...
INFO:    Build complete: my_test_image.sif
$ 

You should now have a my_test_image.sif file in the current directory. Note that in the above output, where it says INFO: Starting build... there is a series of skipped: already exists messages for the Copying blob lines. This is because the Docker image slices for the Ubuntu 20.04 image have previously been downloaded and are cached on the system where this example is being run. On your system, if the image is not already cached, you will see the slices being downloaded from Docker Hub when these lines of output appear.

Permissions of the created image file

You may find that the created Apptainer image file on your host filesystem is owned by the root user and not your user. In this case, you won’t be able to change the ownership/permissions of the file directly if you don’t have root access.

However, the image file will be readable by you and you should be able to take a copy of the file under a new name which you will then own. You will then be able to modify the permissions of this copy of the image and delete the original root-owned file since the default permissions should allow this.

Cluster platform configuration for running Apptainer containers

Note to instructors: Add details into this box of any custom configuration that needs to be done on the cluster platform or other remote system that you’re providing access to for the purpose of undertaking this course. If apptainer does not require any custom configuration by the user on the host platform, you can remove this box.

It is recommended that you move the created .sif file to a platform with an installation of Apptainer, rather than attempting to run the image using the Docker container. However, if you do wish to try using the Docker container, see the notes below on “Using apptainer run from within the Docker container” for further information.

If you have access to a remote platform with Apptainer installed on it, you should now move your created .sif image file to this platform. You could, for example, do this using the command line secure copy command scp.

Using scp (secure copy) to copy files between systems

scp is a widely used tool that uses the SSH protocol to securely copy files between systems. As such, the syntax is similar to that of SSH.

For example, if you want to copy the my_image.sif file from the current directory on your local system to your home directory (e.g. /home/myuser/) on a remote system (e.g. hpc.myinstitution.ac.uk) where an SSH private key is required for login, you would use a command similar to the following:

scp -i /path/to/keyfile/id_mykey ./my_image.sif myuser@hpc.myinstitution.ac.uk:/home/myuser/

Note that if you leave off the /home/myuser and just end the command with the :, the file will, by default, be copied to your home directory.

We can now attempt to run a container from the image that we built:

$ apptainer run my_test_image.sif

If everything worked successfully, you should see the message printed by Python:

Hello World! Hello from our custom Apptainer image!

Using apptainer run from within the Docker container

It is strongly recommended that you don’t use the Docker container for running Apptainer images, only for creating them, since the Apptainer command runs within the container as the root user.

However, for the purposes of this simple example, and potentially for testing/debugging purposes it is useful to know how to run a Apptainer container within the Docker Apptainer container. You may recall from the Running a container from the image section in the previous episode that we used the --contain switch with the apptainer command. If you don’t use this switch, it is likely that you will get an error relating to /etc/localtime similar to the following:

WARNING: skipping mount of /etc/localtime: no such file or directory
FATAL:   container creation failed: mount /etc/localtime->/etc/localtime error: while mounting /etc/localtime: mount source /etc/localtime doesn't exist

This occurs because the /etc/localtime file that provides timezone configuration is not present within the Docker container. If you want to use the Docker container to test that your newly created image runs, you can use the --contain switch, or you can open a shell in the Docker container and add a timezone configuration as described in the Alpine Linux documentation:

$ apk add tzdata
$ cp /usr/share/zoneinfo/Europe/London /etc/localtime

The apptainer run command should now work successfully without needing to use --contain. Bear in mind that once you exit the Docker Apptainer container shell and shutdown the container, this configuration will not persist.

More advanced definition files

Here we’ve looked at a very simple example of how to create an image. At this stage, you might want to have a go at creating your own definition file for some code of your own or an application that you work with regularly. There are several definition file sections that were not used in the above example, these are:

The Sections part of the definition file documentation details all the sections and provides an example definition file that makes use of all the sections.

Additional Apptainer features

Apptainer has a wide range of features. You can find full details in the Apptainer User Guide and we highlight a couple of key features here that may be of use/interest:

Remote Builder Capabilities: If you have access to a platform with Apptainer installed but you don’t have root access to create containers, you may be able to use the Remote Builder functionality to offload the process of building an image to remote cloud resources. You’ll need to register for a cloud token via the link on the Remote Builder page.

Signing containers: If you do want to share container image (.sif) files directly with colleagues or collaborators, how can the people you send an image to be sure that they have received the file without it being tampered with or suffering from corruption during transfer/storage? And how can you be sure that the same goes for any container image file you receive from others? Apptainer supports signing containers. This allows a digital signature to be linked to an image file. This signature can be used to verify that an image file has been signed by the holder of a specific key and that the file is unchanged from when it was signed. You can find full details of how to use this functionality in the Apptainer documentation on Signing and Verifying Containers.

Key Points

  • Apptainer definition files are used to define the build process and configuration for an image.

  • Apptainer’s Docker container provides a way to build images on a platform where Apptainer is not installed but Docker is available.

  • Existing images from remote registries such as Docker Hub and Apptainer Hub can be used as a base for creating new Apptainer images.