Working with biological sequences
Last updated on 2024-11-19 | Edit this page
Overview
Questions
- What is the recommended way to represent biological sequences in Bioconductor?
- What Bioconductor packages provides methods to efficiently process biological sequences?
Objectives
- Explain how biological sequences are represented in the Bioconductor project.
- Identify Bioconductor packages and methods available to process biological sequences.
Install packages
Before we can proceed into the following sections, we install some
Bioconductor packages that we will need. First, we check that the BiocManager
package is installed before trying to use it; otherwise we install it.
Then we use the BiocManager::install()
function to install
the necessary packages.
R
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("Biostrings")
The Biostrings package and classes
Why do we need classes for biological sequences?
Biological sequences are arguably some of the simplest biological entities to represent computationally. Examples include nucleic acid sequences (e.g., DNA, RNA) and protein sequences composed of amino acids.
That is because alphabets have been designed and agreed upon to represent individual monomers using character symbols.
For instance, using the alphabet for amino acids, the reference protein sequence for the Actin, alpha skeletal muscle protein sequence is represented as follows.
OUTPUT
[1] "MCDEDETTALVCDNGSGLVKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIITNWDDMEKIWHHTFYNELRVAPEEHPTLLTEAPLNPKANREKMTQIMFETFNVPAMYVAIQAVLSLYASGRTTGIVLDSGDGVTHNVPIYEGYALPHAIMRLDLAGRDLTDYLMKILTERGYSFVTTAEREIVRDIKEKLCYVALDFENEMATAASSSSLEKSYELPDGQVITIGNERFRCPETLFQPSFIGMESAGIHETTYNSIMKCDIDIRKDLYANNVMSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWITKQEYDEAGPSIVHRKCF"
However, a major limitation of regular character vectors is that they do not check the validity of the sequences that they contain. Practically, it is possible to store meaningless sequences of symbols in character strings, including symbols that are not part of the official alphabet for the relevant type of polymer. In those cases, the burden of checking the validity of sequences falls on the programs that process them, or causing those programs to run into errors when they unexpectedly encounter invalid symbols in a sequence.
Instead, S4 classes – demonstrated in the earlier episode The S4 class system – provide a way to label objects as distinct “DNA”, “RNA”, or “protein” varieties of biological sequences. This label is an extremely powerful way to inform programs on the set of character symbols they can expect in the sequence, but also the range of computational operations that can be applied to those sequences. For instance, a function designed to translate nucleic acid sequences into the corresponding amino acid sequence should only be allowed to run on sequences that represent nucleic acids.
Challenge
Can you tell whether this character string is a valid DNA sequence?
AATTGGCCRGGCCAATT
Yes, this is a valid DNA sequence using ambiguity codes defined in
the IUPAC
notation. In this case, A
, T
, C
,
and G
represents the four standard types of nucleotides,
while the R
symbol acts as a regular expression
representing either of the two purine nucleotide bases, A
and G
.
The Biostrings package
Overview
In the Bioconductor project, the Biostrings
package implements S4 classes to represent biological sequences as S4
objects, e.g. DNAString
for sequences of nucleotides in
deoxyribonucleic acid polymers, and AAString
for sequences
of amino acids in protein polymers. Those S4 classes provide
memory-efficient containers for character strings, automatic
validity-checking functionality for each class of biological molecules,
and methods implementing various string matching algorithms and other
utilities for fast manipulation and processing of large biological
sequences or sets of sequences.
A short presentation of the basic classes defined in the Biostrings
package is available in one of the package vignettes, accessible as
vignette("Biostrings2Classes")
, while more detailed
information is provided in the other package vignettes, accessible as
browseVignettes("Biostrings")
.
First steps
To get started, we load the package.
R
library(Biostrings)
With the package loaded and attached to the session, we have access
to the package functions. Those include functions that let us create new
objects of the classes defined in the package. For instance, we can
create an object that represents a DNA sequence, using the
DNAString()
constructor function. Without assigning the
output to an object, we let the resulting object be printed in the
console.
R
DNAString("ATCG")
OUTPUT
4-letter DNAString object
seq: ATCG
Notably, DNA sequences may only contain the symbols A
,
T
, C
, and G
, to represent the
four DNA nucleotide bases, the symbol N
as a placeholder
for an unknown or unspecified base, and a restricted set of additional
symbols with special meaning defined in the IUPAC Extended
Genetic Alphabet. Notice that the constructor function does not let
us create objects that contain invalid characters,
e.g. Z
.
R
DNAString("ATCGZ")
ERROR
Error in .Call2("new_XString_from_CHARACTER", class(x0), string, start, : key 90 (char 'Z') not in lookup table
Specifically, the IUPAC Extended
Genetic Alphabet defines ambiguity codes that represent sets of
nucleotides, in a way similar to regular expressions. The
IUPAC_CODE_MAP
named character vector contains the mapping
from the IUPAC nucleotide ambiguity codes to their meaning.
R
IUPAC_CODE_MAP
OUTPUT
A C G T M R W S Y K V
"A" "C" "G" "T" "AC" "AG" "AT" "CG" "CT" "GT" "ACG"
H D B N
"ACT" "AGT" "CGT" "ACGT"
Any of those nucleotide codes are allowed in the sequence of a
DNAString
object. For instance, the symbol M
represents either of the two nucleotides A
or
C
at a given position in a nucleic acid sequence.
R
DNAString("ATCGM")
OUTPUT
5-letter DNAString object
seq: ATCGM
In particular, pattern matching methods implemented in the Biostrings
package recognize the meaning of ambiguity codes for each class of
biological sequence, allowing them to efficiently match motifs queried
by users without the need to design elaborate regular expressions. For
instance, the method matchPattern()
takes a
pattern=
and a subject=
argument, and returns
a Views
object that reports and displays any match of the
pattern
expression at any position in the
subject
sequence.
Note that the default option fixed = TRUE
instructs the
method to match the query exactly – i.e., ignore ambiguity codes – which
in this case does not report any exact match.
R
dna1 <- DNAString("ATCGCTTTGA")
matchPattern("GM", dna1, fixed = TRUE)
OUTPUT
Views on a 10-letter DNAString subject
subject: ATCGCTTTGA
views: NONE
Instead, to indicate that the pattern includes some ambiguity code,
the argument fixed
must be set to FALSE
.
R
matchPattern("GM", dna1, fixed = FALSE)
OUTPUT
Views on a 10-letter DNAString subject
subject: ATCGCTTTGA
views:
start end width
[1] 4 5 2 [GC]
[2] 9 10 2 [GA]
In this particular example, two views describe matches of the pattern
in the subject sequence. Specifically, the pattern GM
first
matched the sequence GC
spanning positions 4 to 5 in the
subject sequence, and then also matched the sequence GA
from positions 9 to 10.
Similarly to the method matchPattern()
, the method
countPattern()
can be applied to simply count the number of
matches of the pattern
in the subject
sequence. And again, the option fixed
controls whether to
respect ambiguity codes, or match them exactly.
Challenge
How many hits does the following code return? Why?
dna2 <- DNAString("TGATTGCTTGGTTGMTT")
countPattern("GM", dna2, fixed = FALSE)
The method countPattern()
reports 3 hits, because the
option fixed = FALSE
allows the pattern GM
to
match GA
, GC
, and GM
sequences,
due to the use of the ambiguity code M
in the
pattern
.
Importing biological strings from files
In practice, users rarely type the strings representing biological sequences themselves. Most of the time, biological strings are imported from files, either downloaded from public repositories or generated locally using bioinformatics programs.
For instance, we can load the set of adapter sequences for the TruSeq™
DNA PCR-Free whole-genome sequencing library preparation kit from a
file that we downloaded during the lesson setup. Since adapter sequences
are nucleic acid sequences, we must use the function
readDNAStringSet()
.
R
truseq_adapters <- readDNAStringSet(filepath = "data/TruSeq3-PE-2.fa")
truseq_adapters
OUTPUT
DNAStringSet object of length 6:
width seq names
[1] 34 TACACTCTTTCCCTACACGACGCTCTTCCGATCT PrefixPE/1
[2] 34 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT PrefixPE/2
[3] 34 TACACTCTTTCCCTACACGACGCTCTTCCGATCT PE1
[4] 34 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA PE1_rc
[5] 34 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT PE2
[6] 34 AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC PE2_rc
Going further
The help page of the function readDNAStringSet()
–
accessible using help(readDNAStringSet)
– documents related
functions designed to import other types of biological sequences, e.g
readRNAStringSet()
, readAAStringSet()
.
Operations on biological strings
Computing the frequency of symbols
The Biostrings
package provides several functions to process and manipulate classes of
biological strings. For example, we have come across
matchPattern()
and countPattern()
earlier in
this episode.
Another example of a method that can be applied to biological strings
is letterFrequency()
, to compute the frequency of letters
in a biological sequence.
R
letterFrequency(truseq_adapters, letters = DNA_ALPHABET)
OUTPUT
A C G T M R W S Y K V H D B N - + .
[1,] 6 14 3 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 5 8 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 6 14 3 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 11 3 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[5,] 5 8 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[6,] 11 10 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The output is a matrix with one row for each sequence in the
DNAStringSet
object, and one column for each symbol in the
alphabet of deoxyribonucleic acids, provided by the Biostrings
package in a built-in object called DNA_ALPHABET
.
Amino acid sequences
Similarly to the DNAString
and DNAStringSet
classes, the classes AAString
and AAStringSet
allow efficient storage and manipulation of a long amino acid sequence,
or a set thereof.
Similarly to built-in objects for the DNA alphabet, the built-in
objects AA_ALPHABET
, AA_STANDARD
and
AA_PROTEINOGENIC
describe different subsets of the alphabet
of valid symbols for amino acid sequences.
For instance, the AA_ALPHABET
object describes the set
of symbols in the full amino acid alphabet.
R
AA_ALPHABET
OUTPUT
[1] "A" "R" "N" "D" "C" "Q" "E" "G" "H" "I" "L" "K" "M" "F" "P" "S" "T" "W" "Y"
[20] "V" "U" "O" "B" "J" "Z" "X" "*" "-" "+" "."
Challenge
Use base R code to identify the two symbols present in the
AA_PROTEINOGENIC
alphabet object that are absent from the
AA_STANDARD
alphabet object. What do those two symbols
represent?
> setdiff(AA_PROTEINOGENIC, AA_STANDARD)
[1] "U" "O"
The symbols U
and O
represent
selenocysteine and pyrrolysine, respectively. Those two amino acids are
in some species coded for by codons that are usually interpreted as stop
codons. As such, they are not included in the alphabet of “standard”
amino acids, and an alphabet of “proteinogenic” amino acids was defined
to acknowledge the special biology of those amino acids. Either of those
alphabets may be used to determine the validity of an amino acid
sequence, depending on its biological nature.
Translating nucleotide sequences
One of the key motivations for the use of S4 classes and the object-oriented programming (OOP) model relies on the infrastructure of S4 generics and methods. As described in the earlier episode The S4 class system, generics provide a mechanism for defining and applying distinct implementations of the same generic function name, according to the nature of the input object(s) provided to the function call.
For instance, the Biostrings
package provides multiple implementations of a generic called
translate()
, for translating DNA or RNA sequences into
amino acid sequences. The set of input objects supported by the generic
translate()
can be listed using the function
showMethods()
, from the CRAN package methods.
R
showMethods("translate")
OUTPUT
Function: translate (package Biostrings)
x="DNAString"
x="DNAStringSet"
x="MaskedDNAString"
x="MaskedRNAString"
x="RNAString"
x="RNAStringSet"
In the output above, we see that that the generic function
translate()
includes methods capable of handling objects
representing DNA and RNA sequences in the DNAString
and
RNAString
classes, respectively; but also lists of DNA and
RNA sequences in objects of class DNAStringSet
and
RNAStringSet
, as well as other classes capable of storing
DNA and RNA sequences.
To demonstrate the use of the translate()
method, we
first load a set of open reading frames (ORFs) identified by the NIH Open Reading Frame
Finder for the Homo sapiens actin beta (ACTB) mRNA (RefSeq:
NM_001101), using the standard genetic code, a minimal ORF length of 75
nucleotides, and starting with the “ATG” start codon only.
R
actb_orf_nih <- readDNAStringSet("data/actb_orfs.fasta")
actb_orf_nih
OUTPUT
DNAStringSet object of length 13:
width seq names
[1] 222 ATGCCCACCATCACGCCCTGGTG...CGGGGCGGACGCGGTCTCGGCG gi|1519311456|ref...
[2] 1128 ATGGATGATGATATCGCCGCGCT...CGTCCACCGCAAATGCTTCTAG gi|1519311456|ref...
[3] 126 ATGATGATATCGCCGCGCTCGTC...CGCCCCAGGCACCAGGGCGTGA gi|1519311456|ref...
[4] 90 ATGTCGTCCCAGTTGGTGACGAT...CTGGGCCTCGTCGCCCACATAG gi|1519311456|ref...
[5] 225 ATGGGCACAGTGTGGGTGACCCC...AGCCACACGCAGCTCATTGTAG gi|1519311456|ref...
... ... ...
[9] 342 ATGAGATTGGCATGGCTTTATTT...ATGTAATGCAAAATTTTTTTAA gi|1519311456|ref...
[10] 168 ATGGCTTTATTTGTTTTTTTTGT...TTGCACATTGTTGTTTTTTTAA gi|1519311456|ref...
[11] 111 ATGACTATTAAAAAAACAACAAT...CCTTCACCGTTCCAGTTTTTAA gi|1519311456|ref...
[12] 105 ATGCAAAATTTTTTTAATCTTCG...CCTTTTTTGTCCCCCAACTTGA gi|1519311456|ref...
[13] 135 ATGATGAGCCTTCGTGCCCCCCC...TGACTTGAGACCAGTTGAATAA gi|1519311456|ref...
Having imported the nucleotide sequences as a
DNAStringSet
object, we can apply the
translate()
method to that object to produce the amino acid
sequence that results from the translation process for each nucleotide
sequence.
R
actb_aa <- translate(actb_orf_nih)
actb_aa
OUTPUT
AAStringSet object of length 13:
width seq names
[1] 74 MPTITPWCLGRPTMEGKTARGAS...VWTGGGSAKARLCARGADAVSA gi|1519311456|ref...
[2] 376 MDDDIAALVVDNGSGMCKAGFAG...MWISKQEYDESGPSIVHRKCF* gi|1519311456|ref...
[3] 42 MMISPRSSSTTAPACARPASRATMPPGPSSPPSWGAPGTRA* gi|1519311456|ref...
[4] 30 MSSQLVTMPCSMGYFRVRMPLLLWASSPT* gi|1519311456|ref...
[5] 75 MGTVWVTPSPESITMPVVRPEAY...GFRGASVSSTGCSSGATRSSL* gi|1519311456|ref...
... ... ...
[9] 114 MRLAWLYLFFLFCFGFFFFFGLT...QVHTGEVIALLSCKLCNAKFF* gi|1519311456|ref...
[10] 56 MALFVFFVLFWFFFFFWLDSGFK...ERASPKVHNVAEDFDCTLLFF* gi|1519311456|ref...
[11] 37 MTIKKTTMCNQSPRPHCELWGMLAPTDCCHLHRSSF* gi|1519311456|ref...
[12] 35 MQNFFNLRLNTFLFCFILNDEPSCPPFPLFCPPT* gi|1519311456|ref...
[13] 45 MMSLRAPPSPFFVPQLEMYEGFWSPWEWVEAARAYLYTDLRPVE* gi|1519311456|ref...
In the example above, all amino acid sequences visible start with the
typical methionin amino acid encoded by the “ATG” start codon. We also
see that all but one of the amino acid sequences visible end with the
*
symbol, which indicates that the translation process
ended on a stop codon. In contrast, the first open reading frame above
reached the end of the nucleotide sequence without encoutering a stop
codon.
Conveniently, the number of amino acids in each sequence is stated
under the header width
.
Challenge
Extract the length of each amino acid sequence above as an integer vector. What is the length of the longest amino acid sequence translated from any of those open reading frames?
Compare your result with the sequence information on the UniPro page for ACTB (https://www.uniprot.org/uniprot/P60709#sequences).
width(actb_aa)
# or
max(width(actb_aa))
The longest translated sequence contains 376 amino acids.
The Uniprot page reports a sequence of 375 amino acids. However, the
UniProt amino acid sequence does not comprise any symbol to represent
the stop codon. That difference aside, the UniPro amino acid sequence is
identical to the sequence that was produced by the
translate()
method.
The BSgenome package
Overview
In the Bioconductor project, the BSgenome package provides software infrastructure for efficient representation of full genome and their single-nucleotide polymorphisms.
The BSgenome package itself does not contain any genome sequence itself, but provides functionality to access genome sequences available in other Bioconductor packages, as we demonstrate in the next section.
First steps
To get started, we load the package.
R
library(BSgenome)
With the package loaded and attached to the session, we have access to the package functions.
In particular, the function
BSgenome::available.genomes()
can be used to display the
names of Bioconductor packages that contain genome sequences.
R
available.genomes()
OUTPUT
'getOption("repos")' replaces Bioconductor standard repositories, see
'help("repositories", package = "BiocManager")' for details.
Replacement repositories:
BioCsoft: https://bioconductor.org/packages/3.19/bioc
BioCann: https://bioconductor.org/packages/3.19/data/annotation
BioCexp: https://bioconductor.org/packages/3.19/data/experiment
BioCworkflows: https://bioconductor.org/packages/3.19/workflows
BioCbooks: https://bioconductor.org/packages/3.19/books
CRAN: https://cran.rstudio.com
OUTPUT
[1] "BSgenome.Alyrata.JGI.v1"
[2] "BSgenome.Amellifera.BeeBase.assembly4"
[3] "BSgenome.Amellifera.NCBI.AmelHAv3.1"
[4] "BSgenome.Amellifera.UCSC.apiMel2"
[5] "BSgenome.Amellifera.UCSC.apiMel2.masked"
[6] "BSgenome.Aofficinalis.NCBI.V1"
[7] "BSgenome.Athaliana.TAIR.04232008"
[8] "BSgenome.Athaliana.TAIR.TAIR9"
[9] "BSgenome.Btaurus.UCSC.bosTau3"
[10] "BSgenome.Btaurus.UCSC.bosTau3.masked"
[11] "BSgenome.Btaurus.UCSC.bosTau4"
[12] "BSgenome.Btaurus.UCSC.bosTau4.masked"
[13] "BSgenome.Btaurus.UCSC.bosTau6"
[14] "BSgenome.Btaurus.UCSC.bosTau6.masked"
[15] "BSgenome.Btaurus.UCSC.bosTau8"
[16] "BSgenome.Btaurus.UCSC.bosTau9"
[17] "BSgenome.Btaurus.UCSC.bosTau9.masked"
[18] "BSgenome.Carietinum.NCBI.v1"
[19] "BSgenome.Celegans.UCSC.ce10"
[20] "BSgenome.Celegans.UCSC.ce11"
[21] "BSgenome.Celegans.UCSC.ce2"
[22] "BSgenome.Celegans.UCSC.ce6"
[23] "BSgenome.Cfamiliaris.UCSC.canFam2"
[24] "BSgenome.Cfamiliaris.UCSC.canFam2.masked"
[25] "BSgenome.Cfamiliaris.UCSC.canFam3"
[26] "BSgenome.Cfamiliaris.UCSC.canFam3.masked"
[27] "BSgenome.Cjacchus.UCSC.calJac3"
[28] "BSgenome.Cjacchus.UCSC.calJac4"
[29] "BSgenome.CneoformansVarGrubiiKN99.NCBI.ASM221672v1"
[30] "BSgenome.Creinhardtii.JGI.v5.6"
[31] "BSgenome.Dmelanogaster.UCSC.dm2"
[32] "BSgenome.Dmelanogaster.UCSC.dm2.masked"
[33] "BSgenome.Dmelanogaster.UCSC.dm3"
[34] "BSgenome.Dmelanogaster.UCSC.dm3.masked"
[35] "BSgenome.Dmelanogaster.UCSC.dm6"
[36] "BSgenome.Drerio.UCSC.danRer10"
[37] "BSgenome.Drerio.UCSC.danRer11"
[38] "BSgenome.Drerio.UCSC.danRer5"
[39] "BSgenome.Drerio.UCSC.danRer5.masked"
[40] "BSgenome.Drerio.UCSC.danRer6"
[41] "BSgenome.Drerio.UCSC.danRer6.masked"
[42] "BSgenome.Drerio.UCSC.danRer7"
[43] "BSgenome.Drerio.UCSC.danRer7.masked"
[44] "BSgenome.Dvirilis.Ensembl.dvircaf1"
[45] "BSgenome.Ecoli.NCBI.20080805"
[46] "BSgenome.Gaculeatus.UCSC.gasAcu1"
[47] "BSgenome.Gaculeatus.UCSC.gasAcu1.masked"
[48] "BSgenome.Ggallus.UCSC.galGal3"
[49] "BSgenome.Ggallus.UCSC.galGal3.masked"
[50] "BSgenome.Ggallus.UCSC.galGal4"
[51] "BSgenome.Ggallus.UCSC.galGal4.masked"
[52] "BSgenome.Ggallus.UCSC.galGal5"
[53] "BSgenome.Ggallus.UCSC.galGal6"
[54] "BSgenome.Gmax.NCBI.Gmv40"
[55] "BSgenome.Hsapiens.1000genomes.hs37d5"
[56] "BSgenome.Hsapiens.NCBI.GRCh38"
[57] "BSgenome.Hsapiens.NCBI.T2T.CHM13v2.0"
[58] "BSgenome.Hsapiens.UCSC.hg17"
[59] "BSgenome.Hsapiens.UCSC.hg17.masked"
[60] "BSgenome.Hsapiens.UCSC.hg18"
[61] "BSgenome.Hsapiens.UCSC.hg18.masked"
[62] "BSgenome.Hsapiens.UCSC.hg19"
[63] "BSgenome.Hsapiens.UCSC.hg19.masked"
[64] "BSgenome.Hsapiens.UCSC.hg38"
[65] "BSgenome.Hsapiens.UCSC.hg38.dbSNP151.major"
[66] "BSgenome.Hsapiens.UCSC.hg38.dbSNP151.minor"
[67] "BSgenome.Hsapiens.UCSC.hg38.masked"
[68] "BSgenome.Hsapiens.UCSC.hs1"
[69] "BSgenome.Mdomestica.UCSC.monDom5"
[70] "BSgenome.Mfascicularis.NCBI.5.0"
[71] "BSgenome.Mfascicularis.NCBI.6.0"
[72] "BSgenome.Mfuro.UCSC.musFur1"
[73] "BSgenome.Mmulatta.UCSC.rheMac10"
[74] "BSgenome.Mmulatta.UCSC.rheMac2"
[75] "BSgenome.Mmulatta.UCSC.rheMac2.masked"
[76] "BSgenome.Mmulatta.UCSC.rheMac3"
[77] "BSgenome.Mmulatta.UCSC.rheMac3.masked"
[78] "BSgenome.Mmulatta.UCSC.rheMac8"
[79] "BSgenome.Mmusculus.UCSC.mm10"
[80] "BSgenome.Mmusculus.UCSC.mm10.masked"
[81] "BSgenome.Mmusculus.UCSC.mm39"
[82] "BSgenome.Mmusculus.UCSC.mm8"
[83] "BSgenome.Mmusculus.UCSC.mm8.masked"
[84] "BSgenome.Mmusculus.UCSC.mm9"
[85] "BSgenome.Mmusculus.UCSC.mm9.masked"
[86] "BSgenome.Osativa.MSU.MSU7"
[87] "BSgenome.Ppaniscus.UCSC.panPan1"
[88] "BSgenome.Ppaniscus.UCSC.panPan2"
[89] "BSgenome.Ptroglodytes.UCSC.panTro2"
[90] "BSgenome.Ptroglodytes.UCSC.panTro2.masked"
[91] "BSgenome.Ptroglodytes.UCSC.panTro3"
[92] "BSgenome.Ptroglodytes.UCSC.panTro3.masked"
[93] "BSgenome.Ptroglodytes.UCSC.panTro5"
[94] "BSgenome.Ptroglodytes.UCSC.panTro6"
[95] "BSgenome.Rnorvegicus.UCSC.rn4"
[96] "BSgenome.Rnorvegicus.UCSC.rn4.masked"
[97] "BSgenome.Rnorvegicus.UCSC.rn5"
[98] "BSgenome.Rnorvegicus.UCSC.rn5.masked"
[99] "BSgenome.Rnorvegicus.UCSC.rn6"
[100] "BSgenome.Rnorvegicus.UCSC.rn7"
[101] "BSgenome.Scerevisiae.UCSC.sacCer1"
[102] "BSgenome.Scerevisiae.UCSC.sacCer2"
[103] "BSgenome.Scerevisiae.UCSC.sacCer3"
[104] "BSgenome.Sscrofa.UCSC.susScr11"
[105] "BSgenome.Sscrofa.UCSC.susScr3"
[106] "BSgenome.Sscrofa.UCSC.susScr3.masked"
[107] "BSgenome.Tgondii.ToxoDB.7.0"
[108] "BSgenome.Tguttata.UCSC.taeGut1"
[109] "BSgenome.Tguttata.UCSC.taeGut1.masked"
[110] "BSgenome.Tguttata.UCSC.taeGut2"
[111] "BSgenome.Vvinifera.URGI.IGGP12Xv0"
[112] "BSgenome.Vvinifera.URGI.IGGP12Xv2"
[113] "BSgenome.Vvinifera.URGI.IGGP8X"
Installing BSgenome packages
To use one of the available genomes, the corresponding package must
be installed first. For instance, the example below demonstrates how the
data package BSgenome.Hsapiens.UCSC.hg38.masked
can be installed using the function BiocManager::install()
that we have seen before.
R
BiocManager::install("BSgenome.Hsapiens.UCSC.hg38.masked")
Using BSgenome packages
Once installed, BSgenome packages can be loaded like any other R
package, using the library()
function.
R
library(BSgenome.Hsapiens.UCSC.hg38.masked)
Each BSgenome package contains an object that is named identically to the package and contains the genome sequence.
Having loaded the package BSgenome.Hsapiens.UCSC.hg38.masked above, we can display the BSgenome object as follows.
R
BSgenome.Hsapiens.UCSC.hg38.masked
OUTPUT
| BSgenome object for Human
| - organism: Homo sapiens
| - provider: UCSC
| - genome: hg38
| - release date: 2023/01/31
| - 711 sequence(s):
| chr1 chr2 chr3
| chr4 chr5 chr6
| chr7 chr8 chr9
| chr10 chr11 chr12
| chr13 chr14 chr15
| ... ... ...
| chr19_KV575256v1_alt chr19_KV575257v1_alt chr19_KV575258v1_alt
| chr19_KV575259v1_alt chr19_KV575260v1_alt chr19_MU273387v1_alt
| chr22_KN196485v1_alt chr22_KN196486v1_alt chr22_KQ458387v1_alt
| chr22_KQ458388v1_alt chr22_KQ759761v1_alt chrX_KV766199v1_alt
| chrX_MU273395v1_alt chrX_MU273396v1_alt chrX_MU273397v1_alt
|
| Tips: call 'seqnames()' on the object to get all the sequence names, call
| 'seqinfo()' to get the full sequence info, use the '$' or '[[' operator to
| access a given sequence, see '?BSgenome' for more information.
Given the length and the complexity of the object name, it is common
practice to assign a copy of BSgenome objects to a new object simply
called genome
.
R
genome <- BSgenome.Hsapiens.UCSC.hg38.masked
Using BSgenome objects
When printing BSgenome objects in the console (see above), some helpful tips are displayed under the object itself, hinting at functions commonly used to access information in the object.
For instance, the function seqnames()
can be used get
the list of sequence names (i.e., chromosomes and contigs) present in
the object.
R
seqnames(genome)
OUTPUT
[1] "chr1" "chr2"
[3] "chr3" "chr4"
[5] "chr5" "chr6"
[7] "chr7" "chr8"
[9] "chr9" "chr10"
[11] "chr11" "chr12"
[13] "chr13" "chr14"
[15] "chr15" "chr16"
[17] "chr17" "chr18"
[19] "chr19" "chr20"
[21] "chr21" "chr22"
[23] "chrX" "chrY"
[25] "chrM" "chr1_GL383518v1_alt"
[27] "chr1_GL383519v1_alt" "chr1_GL383520v2_alt"
[29] "chr1_KI270759v1_alt" "chr1_KI270760v1_alt"
[31] "chr1_KI270761v1_alt" "chr1_KI270762v1_alt"
[33] "chr1_KI270763v1_alt" "chr1_KI270764v1_alt"
[35] "chr1_KI270765v1_alt" "chr1_KI270766v1_alt"
[37] "chr1_KI270892v1_alt" "chr2_GL383521v1_alt"
[39] "chr2_GL383522v1_alt" "chr2_GL582966v2_alt"
[41] "chr2_KI270767v1_alt" "chr2_KI270768v1_alt"
[43] "chr2_KI270769v1_alt" "chr2_KI270770v1_alt"
[45] "chr2_KI270771v1_alt" "chr2_KI270772v1_alt"
[47] "chr2_KI270773v1_alt" "chr2_KI270774v1_alt"
[49] "chr2_KI270775v1_alt" "chr2_KI270776v1_alt"
[51] "chr2_KI270893v1_alt" "chr2_KI270894v1_alt"
[53] "chr3_GL383526v1_alt" "chr3_JH636055v2_alt"
[55] "chr3_KI270777v1_alt" "chr3_KI270778v1_alt"
[57] "chr3_KI270779v1_alt" "chr3_KI270780v1_alt"
[59] "chr3_KI270781v1_alt" "chr3_KI270782v1_alt"
[61] "chr3_KI270783v1_alt" "chr3_KI270784v1_alt"
[63] "chr3_KI270895v1_alt" "chr3_KI270924v1_alt"
[65] "chr3_KI270934v1_alt" "chr3_KI270935v1_alt"
[67] "chr3_KI270936v1_alt" "chr3_KI270937v1_alt"
[69] "chr4_GL000257v2_alt" "chr4_GL383527v1_alt"
[71] "chr4_GL383528v1_alt" "chr4_KI270785v1_alt"
[73] "chr4_KI270786v1_alt" "chr4_KI270787v1_alt"
[75] "chr4_KI270788v1_alt" "chr4_KI270789v1_alt"
[77] "chr4_KI270790v1_alt" "chr4_KI270896v1_alt"
[79] "chr4_KI270925v1_alt" "chr5_GL339449v2_alt"
[81] "chr5_GL383530v1_alt" "chr5_GL383531v1_alt"
[83] "chr5_GL383532v1_alt" "chr5_GL949742v1_alt"
[85] "chr5_KI270791v1_alt" "chr5_KI270792v1_alt"
[87] "chr5_KI270793v1_alt" "chr5_KI270794v1_alt"
[89] "chr5_KI270795v1_alt" "chr5_KI270796v1_alt"
[91] "chr5_KI270897v1_alt" "chr5_KI270898v1_alt"
[93] "chr6_GL000250v2_alt" "chr6_GL000251v2_alt"
[95] "chr6_GL000252v2_alt" "chr6_GL000253v2_alt"
[97] "chr6_GL000254v2_alt" "chr6_GL000255v2_alt"
[99] "chr6_GL000256v2_alt" "chr6_GL383533v1_alt"
[101] "chr6_KB021644v2_alt" "chr6_KI270758v1_alt"
[103] "chr6_KI270797v1_alt" "chr6_KI270798v1_alt"
[105] "chr6_KI270799v1_alt" "chr6_KI270800v1_alt"
[107] "chr6_KI270801v1_alt" "chr6_KI270802v1_alt"
[109] "chr7_GL383534v2_alt" "chr7_KI270803v1_alt"
[111] "chr7_KI270804v1_alt" "chr7_KI270805v1_alt"
[113] "chr7_KI270806v1_alt" "chr7_KI270807v1_alt"
[115] "chr7_KI270808v1_alt" "chr7_KI270809v1_alt"
[117] "chr7_KI270899v1_alt" "chr8_KI270810v1_alt"
[119] "chr8_KI270811v1_alt" "chr8_KI270812v1_alt"
[121] "chr8_KI270813v1_alt" "chr8_KI270814v1_alt"
[123] "chr8_KI270815v1_alt" "chr8_KI270816v1_alt"
[125] "chr8_KI270817v1_alt" "chr8_KI270818v1_alt"
[127] "chr8_KI270819v1_alt" "chr8_KI270820v1_alt"
[129] "chr8_KI270821v1_alt" "chr8_KI270822v1_alt"
[131] "chr8_KI270900v1_alt" "chr8_KI270901v1_alt"
[133] "chr8_KI270926v1_alt" "chr9_GL383539v1_alt"
[135] "chr9_GL383540v1_alt" "chr9_GL383541v1_alt"
[137] "chr9_GL383542v1_alt" "chr9_KI270823v1_alt"
[139] "chr10_GL383545v1_alt" "chr10_GL383546v1_alt"
[141] "chr10_KI270824v1_alt" "chr10_KI270825v1_alt"
[143] "chr11_GL383547v1_alt" "chr11_JH159136v1_alt"
[145] "chr11_JH159137v1_alt" "chr11_KI270826v1_alt"
[147] "chr11_KI270827v1_alt" "chr11_KI270829v1_alt"
[149] "chr11_KI270830v1_alt" "chr11_KI270831v1_alt"
[151] "chr11_KI270832v1_alt" "chr11_KI270902v1_alt"
[153] "chr11_KI270903v1_alt" "chr11_KI270927v1_alt"
[155] "chr12_GL383549v1_alt" "chr12_GL383550v2_alt"
[157] "chr12_GL383551v1_alt" "chr12_GL383552v1_alt"
[159] "chr12_GL383553v2_alt" "chr12_GL877875v1_alt"
[161] "chr12_GL877876v1_alt" "chr12_KI270833v1_alt"
[163] "chr12_KI270834v1_alt" "chr12_KI270835v1_alt"
[165] "chr12_KI270836v1_alt" "chr12_KI270837v1_alt"
[167] "chr12_KI270904v1_alt" "chr13_KI270838v1_alt"
[169] "chr13_KI270839v1_alt" "chr13_KI270840v1_alt"
[171] "chr13_KI270841v1_alt" "chr13_KI270842v1_alt"
[173] "chr13_KI270843v1_alt" "chr14_KI270844v1_alt"
[175] "chr14_KI270845v1_alt" "chr14_KI270846v1_alt"
[177] "chr14_KI270847v1_alt" "chr15_GL383554v1_alt"
[179] "chr15_GL383555v2_alt" "chr15_KI270848v1_alt"
[181] "chr15_KI270849v1_alt" "chr15_KI270850v1_alt"
[183] "chr15_KI270851v1_alt" "chr15_KI270852v1_alt"
[185] "chr15_KI270905v1_alt" "chr15_KI270906v1_alt"
[187] "chr16_GL383556v1_alt" "chr16_GL383557v1_alt"
[189] "chr16_KI270853v1_alt" "chr16_KI270854v1_alt"
[191] "chr16_KI270855v1_alt" "chr16_KI270856v1_alt"
[193] "chr17_GL000258v2_alt" "chr17_GL383563v3_alt"
[195] "chr17_GL383564v2_alt" "chr17_GL383565v1_alt"
[197] "chr17_GL383566v1_alt" "chr17_JH159146v1_alt"
[199] "chr17_JH159147v1_alt" "chr17_JH159148v1_alt"
[201] "chr17_KI270857v1_alt" "chr17_KI270858v1_alt"
[203] "chr17_KI270859v1_alt" "chr17_KI270860v1_alt"
[205] "chr17_KI270861v1_alt" "chr17_KI270862v1_alt"
[207] "chr17_KI270907v1_alt" "chr17_KI270908v1_alt"
[209] "chr17_KI270909v1_alt" "chr17_KI270910v1_alt"
[211] "chr18_GL383567v1_alt" "chr18_GL383568v1_alt"
[213] "chr18_GL383569v1_alt" "chr18_GL383570v1_alt"
[215] "chr18_GL383571v1_alt" "chr18_GL383572v1_alt"
[217] "chr18_KI270863v1_alt" "chr18_KI270864v1_alt"
[219] "chr18_KI270911v1_alt" "chr18_KI270912v1_alt"
[221] "chr19_GL000209v2_alt" "chr19_GL383573v1_alt"
[223] "chr19_GL383574v1_alt" "chr19_GL383575v2_alt"
[225] "chr19_GL383576v1_alt" "chr19_GL949746v1_alt"
[227] "chr19_GL949747v2_alt" "chr19_GL949748v2_alt"
[229] "chr19_GL949749v2_alt" "chr19_GL949750v2_alt"
[231] "chr19_GL949751v2_alt" "chr19_GL949752v1_alt"
[233] "chr19_GL949753v2_alt" "chr19_KI270865v1_alt"
[235] "chr19_KI270866v1_alt" "chr19_KI270867v1_alt"
[237] "chr19_KI270868v1_alt" "chr19_KI270882v1_alt"
[239] "chr19_KI270883v1_alt" "chr19_KI270884v1_alt"
[241] "chr19_KI270885v1_alt" "chr19_KI270886v1_alt"
[243] "chr19_KI270887v1_alt" "chr19_KI270888v1_alt"
[245] "chr19_KI270889v1_alt" "chr19_KI270890v1_alt"
[247] "chr19_KI270891v1_alt" "chr19_KI270914v1_alt"
[249] "chr19_KI270915v1_alt" "chr19_KI270916v1_alt"
[251] "chr19_KI270917v1_alt" "chr19_KI270918v1_alt"
[253] "chr19_KI270919v1_alt" "chr19_KI270920v1_alt"
[255] "chr19_KI270921v1_alt" "chr19_KI270922v1_alt"
[257] "chr19_KI270923v1_alt" "chr19_KI270929v1_alt"
[259] "chr19_KI270930v1_alt" "chr19_KI270931v1_alt"
[261] "chr19_KI270932v1_alt" "chr19_KI270933v1_alt"
[263] "chr19_KI270938v1_alt" "chr20_GL383577v2_alt"
[265] "chr20_KI270869v1_alt" "chr20_KI270870v1_alt"
[267] "chr20_KI270871v1_alt" "chr21_GL383578v2_alt"
[269] "chr21_GL383579v2_alt" "chr21_GL383580v2_alt"
[271] "chr21_GL383581v2_alt" "chr21_KI270872v1_alt"
[273] "chr21_KI270873v1_alt" "chr21_KI270874v1_alt"
[275] "chr22_GL383582v2_alt" "chr22_GL383583v2_alt"
[277] "chr22_KB663609v1_alt" "chr22_KI270875v1_alt"
[279] "chr22_KI270876v1_alt" "chr22_KI270877v1_alt"
[281] "chr22_KI270878v1_alt" "chr22_KI270879v1_alt"
[283] "chr22_KI270928v1_alt" "chrX_KI270880v1_alt"
[285] "chrX_KI270881v1_alt" "chrX_KI270913v1_alt"
[287] "chr1_KI270706v1_random" "chr1_KI270707v1_random"
[289] "chr1_KI270708v1_random" "chr1_KI270709v1_random"
[291] "chr1_KI270710v1_random" "chr1_KI270711v1_random"
[293] "chr1_KI270712v1_random" "chr1_KI270713v1_random"
[295] "chr1_KI270714v1_random" "chr2_KI270715v1_random"
[297] "chr2_KI270716v1_random" "chr3_GL000221v1_random"
[299] "chr4_GL000008v2_random" "chr5_GL000208v1_random"
[301] "chr9_KI270717v1_random" "chr9_KI270718v1_random"
[303] "chr9_KI270719v1_random" "chr9_KI270720v1_random"
[305] "chr11_KI270721v1_random" "chr14_GL000009v2_random"
[307] "chr14_GL000194v1_random" "chr14_GL000225v1_random"
[309] "chr14_KI270722v1_random" "chr14_KI270723v1_random"
[311] "chr14_KI270724v1_random" "chr14_KI270725v1_random"
[313] "chr14_KI270726v1_random" "chr15_KI270727v1_random"
[315] "chr16_KI270728v1_random" "chr17_GL000205v2_random"
[317] "chr17_KI270729v1_random" "chr17_KI270730v1_random"
[319] "chr22_KI270731v1_random" "chr22_KI270732v1_random"
[321] "chr22_KI270733v1_random" "chr22_KI270734v1_random"
[323] "chr22_KI270735v1_random" "chr22_KI270736v1_random"
[325] "chr22_KI270737v1_random" "chr22_KI270738v1_random"
[327] "chr22_KI270739v1_random" "chrY_KI270740v1_random"
[329] "chrUn_GL000195v1" "chrUn_GL000213v1"
[331] "chrUn_GL000214v1" "chrUn_GL000216v2"
[333] "chrUn_GL000218v1" "chrUn_GL000219v1"
[335] "chrUn_GL000220v1" "chrUn_GL000224v1"
[337] "chrUn_GL000226v1" "chrUn_KI270302v1"
[339] "chrUn_KI270303v1" "chrUn_KI270304v1"
[341] "chrUn_KI270305v1" "chrUn_KI270310v1"
[343] "chrUn_KI270311v1" "chrUn_KI270312v1"
[345] "chrUn_KI270315v1" "chrUn_KI270316v1"
[347] "chrUn_KI270317v1" "chrUn_KI270320v1"
[349] "chrUn_KI270322v1" "chrUn_KI270329v1"
[351] "chrUn_KI270330v1" "chrUn_KI270333v1"
[353] "chrUn_KI270334v1" "chrUn_KI270335v1"
[355] "chrUn_KI270336v1" "chrUn_KI270337v1"
[357] "chrUn_KI270338v1" "chrUn_KI270340v1"
[359] "chrUn_KI270362v1" "chrUn_KI270363v1"
[361] "chrUn_KI270364v1" "chrUn_KI270366v1"
[363] "chrUn_KI270371v1" "chrUn_KI270372v1"
[365] "chrUn_KI270373v1" "chrUn_KI270374v1"
[367] "chrUn_KI270375v1" "chrUn_KI270376v1"
[369] "chrUn_KI270378v1" "chrUn_KI270379v1"
[371] "chrUn_KI270381v1" "chrUn_KI270382v1"
[373] "chrUn_KI270383v1" "chrUn_KI270384v1"
[375] "chrUn_KI270385v1" "chrUn_KI270386v1"
[377] "chrUn_KI270387v1" "chrUn_KI270388v1"
[379] "chrUn_KI270389v1" "chrUn_KI270390v1"
[381] "chrUn_KI270391v1" "chrUn_KI270392v1"
[383] "chrUn_KI270393v1" "chrUn_KI270394v1"
[385] "chrUn_KI270395v1" "chrUn_KI270396v1"
[387] "chrUn_KI270411v1" "chrUn_KI270412v1"
[389] "chrUn_KI270414v1" "chrUn_KI270417v1"
[391] "chrUn_KI270418v1" "chrUn_KI270419v1"
[393] "chrUn_KI270420v1" "chrUn_KI270422v1"
[395] "chrUn_KI270423v1" "chrUn_KI270424v1"
[397] "chrUn_KI270425v1" "chrUn_KI270429v1"
[399] "chrUn_KI270435v1" "chrUn_KI270438v1"
[401] "chrUn_KI270442v1" "chrUn_KI270448v1"
[403] "chrUn_KI270465v1" "chrUn_KI270466v1"
[405] "chrUn_KI270467v1" "chrUn_KI270468v1"
[407] "chrUn_KI270507v1" "chrUn_KI270508v1"
[409] "chrUn_KI270509v1" "chrUn_KI270510v1"
[411] "chrUn_KI270511v1" "chrUn_KI270512v1"
[413] "chrUn_KI270515v1" "chrUn_KI270516v1"
[415] "chrUn_KI270517v1" "chrUn_KI270518v1"
[417] "chrUn_KI270519v1" "chrUn_KI270521v1"
[419] "chrUn_KI270522v1" "chrUn_KI270528v1"
[421] "chrUn_KI270529v1" "chrUn_KI270530v1"
[423] "chrUn_KI270538v1" "chrUn_KI270539v1"
[425] "chrUn_KI270544v1" "chrUn_KI270548v1"
[427] "chrUn_KI270579v1" "chrUn_KI270580v1"
[429] "chrUn_KI270581v1" "chrUn_KI270582v1"
[431] "chrUn_KI270583v1" "chrUn_KI270584v1"
[433] "chrUn_KI270587v1" "chrUn_KI270588v1"
[435] "chrUn_KI270589v1" "chrUn_KI270590v1"
[437] "chrUn_KI270591v1" "chrUn_KI270593v1"
[439] "chrUn_KI270741v1" "chrUn_KI270742v1"
[441] "chrUn_KI270743v1" "chrUn_KI270744v1"
[443] "chrUn_KI270745v1" "chrUn_KI270746v1"
[445] "chrUn_KI270747v1" "chrUn_KI270748v1"
[447] "chrUn_KI270749v1" "chrUn_KI270750v1"
[449] "chrUn_KI270751v1" "chrUn_KI270752v1"
[451] "chrUn_KI270753v1" "chrUn_KI270754v1"
[453] "chrUn_KI270755v1" "chrUn_KI270756v1"
[455] "chrUn_KI270757v1" "chr1_KN196472v1_fix"
[457] "chr1_KN196473v1_fix" "chr1_KN196474v1_fix"
[459] "chr1_KN538360v1_fix" "chr1_KN538361v1_fix"
[461] "chr1_KQ031383v1_fix" "chr1_KZ208906v1_fix"
[463] "chr1_KZ559100v1_fix" "chr1_MU273333v1_fix"
[465] "chr1_MU273334v1_fix" "chr1_MU273335v1_fix"
[467] "chr1_MU273336v1_fix" "chr2_KN538362v1_fix"
[469] "chr2_KN538363v1_fix" "chr2_KQ031384v1_fix"
[471] "chr2_ML143341v1_fix" "chr2_ML143342v1_fix"
[473] "chr2_MU273341v1_fix" "chr2_MU273342v1_fix"
[475] "chr2_MU273343v1_fix" "chr2_MU273344v1_fix"
[477] "chr2_MU273345v1_fix" "chr3_KN196475v1_fix"
[479] "chr3_KN196476v1_fix" "chr3_KN538364v1_fix"
[481] "chr3_KQ031385v1_fix" "chr3_KQ031386v1_fix"
[483] "chr3_KV766192v1_fix" "chr3_KZ559104v1_fix"
[485] "chr3_MU273346v1_fix" "chr3_MU273347v1_fix"
[487] "chr3_MU273348v1_fix" "chr4_KQ983257v1_fix"
[489] "chr4_ML143344v1_fix" "chr4_ML143345v1_fix"
[491] "chr4_ML143346v1_fix" "chr4_ML143347v1_fix"
[493] "chr4_ML143348v1_fix" "chr4_ML143349v1_fix"
[495] "chr4_MU273350v1_fix" "chr4_MU273351v1_fix"
[497] "chr5_KV575244v1_fix" "chr5_ML143350v1_fix"
[499] "chr5_MU273352v1_fix" "chr5_MU273353v1_fix"
[501] "chr5_MU273354v1_fix" "chr5_MU273355v1_fix"
[503] "chr6_KN196478v1_fix" "chr6_KQ031387v1_fix"
[505] "chr6_KQ090016v1_fix" "chr6_KV766194v1_fix"
[507] "chr6_KZ208911v1_fix" "chr6_ML143351v1_fix"
[509] "chr7_KQ031388v1_fix" "chr7_KV880764v1_fix"
[511] "chr7_KV880765v1_fix" "chr7_KZ208912v1_fix"
[513] "chr7_ML143352v1_fix" "chr8_KV880766v1_fix"
[515] "chr8_KV880767v1_fix" "chr8_KZ208914v1_fix"
[517] "chr8_KZ208915v1_fix" "chr8_MU273359v1_fix"
[519] "chr8_MU273360v1_fix" "chr8_MU273361v1_fix"
[521] "chr8_MU273362v1_fix" "chr8_MU273363v1_fix"
[523] "chr9_KN196479v1_fix" "chr9_ML143353v1_fix"
[525] "chr9_MU273364v1_fix" "chr9_MU273365v1_fix"
[527] "chr9_MU273366v1_fix" "chr10_KN196480v1_fix"
[529] "chr10_KN538365v1_fix" "chr10_KN538366v1_fix"
[531] "chr10_KN538367v1_fix" "chr10_KQ090021v1_fix"
[533] "chr10_ML143354v1_fix" "chr10_ML143355v1_fix"
[535] "chr10_MU273367v1_fix" "chr11_KN196481v1_fix"
[537] "chr11_KQ090022v1_fix" "chr11_KQ759759v1_fix"
[539] "chr11_KQ759759v2_fix" "chr11_KV766195v1_fix"
[541] "chr11_KZ559108v1_fix" "chr11_KZ559109v1_fix"
[543] "chr11_ML143356v1_fix" "chr11_ML143357v1_fix"
[545] "chr11_ML143358v1_fix" "chr11_ML143359v1_fix"
[547] "chr11_ML143360v1_fix" "chr11_MU273369v1_fix"
[549] "chr11_MU273370v1_fix" "chr11_MU273371v1_fix"
[551] "chr12_KN196482v1_fix" "chr12_KN538369v1_fix"
[553] "chr12_KN538370v1_fix" "chr12_KQ759760v1_fix"
[555] "chr12_KZ208916v1_fix" "chr12_KZ208917v1_fix"
[557] "chr12_ML143361v1_fix" "chr12_ML143362v1_fix"
[559] "chr12_MU273372v1_fix" "chr13_KN196483v1_fix"
[561] "chr13_KN538371v1_fix" "chr13_KN538372v1_fix"
[563] "chr13_KN538373v1_fix" "chr13_ML143363v1_fix"
[565] "chr13_ML143364v1_fix" "chr13_ML143365v1_fix"
[567] "chr13_ML143366v1_fix" "chr14_KZ208920v1_fix"
[569] "chr14_ML143367v1_fix" "chr14_MU273373v1_fix"
[571] "chr15_KN538374v1_fix" "chr15_ML143369v1_fix"
[573] "chr15_ML143370v1_fix" "chr15_ML143371v1_fix"
[575] "chr15_ML143372v1_fix" "chr15_MU273374v1_fix"
[577] "chr16_KV880768v1_fix" "chr16_KZ559113v1_fix"
[579] "chr16_ML143373v1_fix" "chr16_MU273376v1_fix"
[581] "chr16_MU273377v1_fix" "chr17_KV575245v1_fix"
[583] "chr17_KV766196v1_fix" "chr17_ML143374v1_fix"
[585] "chr17_ML143375v1_fix" "chr17_MU273379v1_fix"
[587] "chr17_MU273380v1_fix" "chr17_MU273381v1_fix"
[589] "chr17_MU273382v1_fix" "chr17_MU273383v1_fix"
[591] "chr18_KQ090028v1_fix" "chr18_KZ208922v1_fix"
[593] "chr18_KZ559115v1_fix" "chr19_KN196484v1_fix"
[595] "chr19_KQ458386v1_fix" "chr19_ML143376v1_fix"
[597] "chr19_MU273384v1_fix" "chr19_MU273385v1_fix"
[599] "chr19_MU273386v1_fix" "chr20_MU273388v1_fix"
[601] "chr20_MU273389v1_fix" "chr21_ML143377v1_fix"
[603] "chr21_MU273390v1_fix" "chr21_MU273391v1_fix"
[605] "chr21_MU273392v1_fix" "chr22_KQ759762v1_fix"
[607] "chr22_KQ759762v2_fix" "chr22_ML143378v1_fix"
[609] "chr22_ML143379v1_fix" "chr22_ML143380v1_fix"
[611] "chrX_ML143381v1_fix" "chrX_ML143382v1_fix"
[613] "chrX_ML143383v1_fix" "chrX_ML143384v1_fix"
[615] "chrX_ML143385v1_fix" "chrX_MU273393v1_fix"
[617] "chrX_MU273394v1_fix" "chrY_KN196487v1_fix"
[619] "chrY_KZ208923v1_fix" "chrY_KZ208924v1_fix"
[621] "chrY_MU273398v1_fix" "chr1_KQ458382v1_alt"
[623] "chr1_KQ458383v1_alt" "chr1_KQ458384v1_alt"
[625] "chr1_KQ983255v1_alt" "chr1_KV880763v1_alt"
[627] "chr1_KZ208904v1_alt" "chr1_KZ208905v1_alt"
[629] "chr1_MU273330v1_alt" "chr1_MU273331v1_alt"
[631] "chr1_MU273332v1_alt" "chr2_KQ983256v1_alt"
[633] "chr2_KZ208907v1_alt" "chr2_KZ208908v1_alt"
[635] "chr2_MU273337v1_alt" "chr2_MU273338v1_alt"
[637] "chr2_MU273339v1_alt" "chr2_MU273340v1_alt"
[639] "chr3_KZ208909v1_alt" "chr3_KZ559101v1_alt"
[641] "chr3_KZ559102v1_alt" "chr3_KZ559103v1_alt"
[643] "chr3_KZ559105v1_alt" "chr3_ML143343v1_alt"
[645] "chr4_KQ090013v1_alt" "chr4_KQ090014v1_alt"
[647] "chr4_KQ090015v1_alt" "chr4_KQ983258v1_alt"
[649] "chr4_KV766193v1_alt" "chr4_MU273349v1_alt"
[651] "chr5_KN196477v1_alt" "chr5_KV575243v1_alt"
[653] "chr5_KZ208910v1_alt" "chr5_MU273356v1_alt"
[655] "chr6_KQ090017v1_alt" "chr6_MU273357v1_alt"
[657] "chr7_KZ208913v1_alt" "chr7_KZ559106v1_alt"
[659] "chr7_MU273358v1_alt" "chr8_KZ559107v1_alt"
[661] "chr9_KQ090018v1_alt" "chr9_KQ090019v1_alt"
[663] "chr10_KQ090020v1_alt" "chr11_KN538368v1_alt"
[665] "chr11_KZ559110v1_alt" "chr11_KZ559111v1_alt"
[667] "chr11_MU273368v1_alt" "chr12_KQ090023v1_alt"
[669] "chr12_KZ208918v1_alt" "chr12_KZ559112v1_alt"
[671] "chr13_KQ090024v1_alt" "chr13_KQ090025v1_alt"
[673] "chr14_KZ208919v1_alt" "chr14_ML143368v1_alt"
[675] "chr15_KQ031389v1_alt" "chr15_MU273375v1_alt"
[677] "chr16_KQ031390v1_alt" "chr16_KQ090026v1_alt"
[679] "chr16_KQ090027v1_alt" "chr16_KZ208921v1_alt"
[681] "chr17_KV766197v1_alt" "chr17_KV766198v1_alt"
[683] "chr17_KZ559114v1_alt" "chr17_MU273378v1_alt"
[685] "chr18_KQ458385v1_alt" "chr18_KZ559116v1_alt"
[687] "chr19_KV575246v1_alt" "chr19_KV575247v1_alt"
[689] "chr19_KV575248v1_alt" "chr19_KV575249v1_alt"
[691] "chr19_KV575250v1_alt" "chr19_KV575251v1_alt"
[693] "chr19_KV575252v1_alt" "chr19_KV575253v1_alt"
[695] "chr19_KV575254v1_alt" "chr19_KV575255v1_alt"
[697] "chr19_KV575256v1_alt" "chr19_KV575257v1_alt"
[699] "chr19_KV575258v1_alt" "chr19_KV575259v1_alt"
[701] "chr19_KV575260v1_alt" "chr19_MU273387v1_alt"
[703] "chr22_KN196485v1_alt" "chr22_KN196486v1_alt"
[705] "chr22_KQ458387v1_alt" "chr22_KQ458388v1_alt"
[707] "chr22_KQ759761v1_alt" "chrX_KV766199v1_alt"
[709] "chrX_MU273395v1_alt" "chrX_MU273396v1_alt"
[711] "chrX_MU273397v1_alt"
Similarly, the function seqinfo()
can be used to get the
full sequence information stored in the object.
R
seqinfo(genome)
OUTPUT
Seqinfo object with 711 sequences (1 circular) from hg38 genome:
seqnames seqlengths isCircular genome
chr1 248956422 FALSE hg38
chr2 242193529 FALSE hg38
chr3 198295559 FALSE hg38
chr4 190214555 FALSE hg38
chr5 181538259 FALSE hg38
... ... ... ...
chr22_KQ759761v1_alt 145162 FALSE hg38
chrX_KV766199v1_alt 188004 FALSE hg38
chrX_MU273395v1_alt 619716 FALSE hg38
chrX_MU273396v1_alt 294119 FALSE hg38
chrX_MU273397v1_alt 330493 FALSE hg38
Finally, the nature of BSgenome objects being akin to a list of
sequences, the operators $
and [[]]
can both
be used to extract individual sequences from the BSgenome object.
R
genome$chr1
OUTPUT
248956422-letter MaskedDNAString object (# for masking)
seq: ####################################...####################################
masks:
maskedwidth maskedratio active names desc
1 18470101 7.419010e-02 TRUE AGAPS assembly gaps
2 5309 2.132502e-05 TRUE AMB intra-contig ambiguities
3 119060341 4.782377e-01 FALSE RM RepeatMasker
4 1647959 6.619468e-03 FALSE TRF Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio
137685771 0.5530517
all active masks together:
maskedwidth maskedratio
18475410 0.07421142
For instance, we can extract the sequence of the Y chromosome and
assign it to a new object chrY
.
R
chrY <- genome[["chrY"]]
Using genome sequences
From this point, genome sequences can be treated very much like
biological strings (e.g. DNAString
) described earlier, in
the Biostrings
package.
For instance, the function countPattern()
can be used to
count the number of occurences of a given pattern in a given genome
sequence.
R
countPattern(pattern = "CANNTG", subject = chrY, fixed = FALSE)
OUTPUT
[1] 141609
Note
In the example above, the argument fixed = FALSE
is used
to indicate that the pattern contain IUPAC
ambiguity codes.
Key Points
- The
Biostrings
package defines classes to represent sequences of nucleotides and amino acids. - The
Biostrings
package also defines methods to efficiently process biological sequences. - The
BSgenome
package provides genome sequences for a range of model organisms immediately available as Bioconductor objects.